Development and optimization of a prediction system model for mechanical properties in rotary friction-welded polyamide joints using the SVM approach and GA optimization
{"title":"Development and optimization of a prediction system model for mechanical properties in rotary friction-welded polyamide joints using the SVM approach and GA optimization","authors":"Elhadj Raouache, Aissa Laouissi, Fares Khalfallah, Yazid Chetbani","doi":"10.1007/s00170-024-13450-w","DOIUrl":null,"url":null,"abstract":"<p>The objective of this experimental study is to utilize rotary friction welding (FW) for assembling similar polyamide materials. The application of the SVM approach enables the development of a predictive model for estimating mechanical properties in RFW processes. Furthermore, the optimization of RFW parameters through GA proves pivotal in selecting optimal welding conditions, providing a variety of choices. The welding parameters considered in this study included rotation speed at five levels and traverse speed at three levels. The strength of the welded samples was characterized by a tensile test. Additionally, temperature measurements were taken to determine the maximum temperature in the joint area. The results demonstrated the dependence of tensile strength and maximum temperature on the rotation speed. Maximum tensile strength is achieved at an optimal rotation speed. Moreover, analysis of variance (ANOVA) indicates that rotation speed is the parameter most influenced by tensile strength.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"122 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00170-024-13450-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this experimental study is to utilize rotary friction welding (FW) for assembling similar polyamide materials. The application of the SVM approach enables the development of a predictive model for estimating mechanical properties in RFW processes. Furthermore, the optimization of RFW parameters through GA proves pivotal in selecting optimal welding conditions, providing a variety of choices. The welding parameters considered in this study included rotation speed at five levels and traverse speed at three levels. The strength of the welded samples was characterized by a tensile test. Additionally, temperature measurements were taken to determine the maximum temperature in the joint area. The results demonstrated the dependence of tensile strength and maximum temperature on the rotation speed. Maximum tensile strength is achieved at an optimal rotation speed. Moreover, analysis of variance (ANOVA) indicates that rotation speed is the parameter most influenced by tensile strength.
期刊介绍:
The International Journal of Advanced Manufacturing Technology bridges the gap between pure research journals and the more practical publications on advanced manufacturing and systems. It therefore provides an outstanding forum for papers covering applications-based research topics relevant to manufacturing processes, machines and process integration.