Quantifying the spatial associations among terrain parameters from digital elevation models

IF 2.1 3区 地球科学 Q2 GEOGRAPHY Transactions in GIS Pub Date : 2024-03-19 DOI:10.1111/tgis.13157
Yutao Zhong, Liyang Xiong, Yumeng Zhou, Guoan Tang
{"title":"Quantifying the spatial associations among terrain parameters from digital elevation models","authors":"Yutao Zhong, Liyang Xiong, Yumeng Zhou, Guoan Tang","doi":"10.1111/tgis.13157","DOIUrl":null,"url":null,"abstract":"Terrain parameters describe the morphological characteristics of a surface and are an important part of the application of geoscience. At present, there is still a lack of scientific and systematic research on the associations among terrain parameters. In this article, 14 representative terrain parameters are selected to explore their spatial association relationships by using the quantification methods of linear correlation degree, distribution similarity and influence degree. Then, we discuss the effects of the digital elevation model (DEM) cell size and landform region on the associations among terrain parameters. Furthermore, the mechanism of the association relationships among terrain parameters is also analyzed to achieve a better understanding of terrain analysis. This study revealed that the similarity in calculation methods, the derivation of terrain parameters from other parameters, the geographic significance of representations, and the characteristics and appearances of landforms are significant factors contributing to the associations of terrain parameters. The terrain parameters with strong associations remained stable with changes in cell size and landform region. However, terrain parameters with weak associations significantly respond to this variety of factors. We quantify the associations among terrain parameters, provide a new perspective for examining the associations among terrain parameters, and provide guidance for the selection of terrain parameters in geoscience research.","PeriodicalId":47842,"journal":{"name":"Transactions in GIS","volume":"124 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions in GIS","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/tgis.13157","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Terrain parameters describe the morphological characteristics of a surface and are an important part of the application of geoscience. At present, there is still a lack of scientific and systematic research on the associations among terrain parameters. In this article, 14 representative terrain parameters are selected to explore their spatial association relationships by using the quantification methods of linear correlation degree, distribution similarity and influence degree. Then, we discuss the effects of the digital elevation model (DEM) cell size and landform region on the associations among terrain parameters. Furthermore, the mechanism of the association relationships among terrain parameters is also analyzed to achieve a better understanding of terrain analysis. This study revealed that the similarity in calculation methods, the derivation of terrain parameters from other parameters, the geographic significance of representations, and the characteristics and appearances of landforms are significant factors contributing to the associations of terrain parameters. The terrain parameters with strong associations remained stable with changes in cell size and landform region. However, terrain parameters with weak associations significantly respond to this variety of factors. We quantify the associations among terrain parameters, provide a new perspective for examining the associations among terrain parameters, and provide guidance for the selection of terrain parameters in geoscience research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从数字高程模型中量化地形参数之间的空间联系
地形参数描述了地表的形态特征,是地球科学应用的重要组成部分。目前,对地形参数之间的关联性还缺乏科学系统的研究。本文选取 14 个具有代表性的地形参数,利用线性相关度、分布相似度和影响度的量化方法,探讨其空间关联关系。然后,讨论了数字高程模型(DEM)单元大小和地貌区域对地形参数关联的影响。此外,还分析了地形参数之间关联关系的机理,以便更好地理解地形分析。该研究表明,计算方法的相似性、地形参数与其他参数的衍生关系、表征的地理意义以及地貌的特征和外观是导致地形参数关联的重要因素。随着单元大小和地貌区域的变化,关联性强的地形参数保持稳定。然而,关联性较弱的地形参数则会对这些因素产生显著影响。我们量化了地形参数之间的关联,为研究地形参数之间的关联提供了一个新的视角,并为地球科学研究中地形参数的选择提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transactions in GIS
Transactions in GIS GEOGRAPHY-
CiteScore
4.60
自引率
8.30%
发文量
116
期刊介绍: Transactions in GIS is an international journal which provides a forum for high quality, original research articles, review articles, short notes and book reviews that focus on: - practical and theoretical issues influencing the development of GIS - the collection, analysis, modelling, interpretation and display of spatial data within GIS - the connections between GIS and related technologies - new GIS applications which help to solve problems affecting the natural or built environments, or business
期刊最新文献
Knowledge‐Guided Automated Cartographic Generalization Process Construction: A Case Study Based on Map Analysis of Public Maps of China City Influence Network: Mining and Analyzing the Influence of Chinese Cities Based on Social Media PyGRF: An Improved Python Geographical Random Forest Model and Case Studies in Public Health and Natural Disasters Neural Sensing: Toward a New Approach to Understanding Emotional Responses to Place Construction of Earth Observation Knowledge Hub Based on Knowledge Graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1