{"title":"DRCLAS: An efficient certificateless aggregate signature scheme with dynamic revocation in vehicular ad-hoc networks","authors":"Rui Guo , Ruihan Dong , Xiong Li , Yinghui Zhang , Dong Zheng","doi":"10.1016/j.vehcom.2024.100763","DOIUrl":null,"url":null,"abstract":"<div><p>The emergence of the Vehicular Ad-hoc Networks (VANETs) has greatly enhanced the efficiency and safety of transportation systems. However, due to the dynamicness and openness of vehicular networks, it is vulnerable for VANETs to confront various security threats. The dissemination of disinformation and the occurrence of attacks within these networks can result in severe damage and compromise the overall security of transportation systems. To mitigate such challenges, this paper presents an efficient certificateless aggregate signature scheme with dynamic revocation in VANETs. Taking use of the early-stopping factorial bitwise divisions (EFBD) algorithm, it achieves the invalid signatures tracking, and revokes the malicious vehicles dynamically. In addition, by combining the fingerprint counting bloom filter (FP-CBF), the trust assessment mechanism and the cloud server, it enables the vehicle to remedy its incorrect signatures. At last, through the comprehensive security and performance analysis, it demonstrates that this protocol enjoys improved communication security and computational efficiency.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"47 ","pages":"Article 100763"},"PeriodicalIF":5.8000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221420962400038X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of the Vehicular Ad-hoc Networks (VANETs) has greatly enhanced the efficiency and safety of transportation systems. However, due to the dynamicness and openness of vehicular networks, it is vulnerable for VANETs to confront various security threats. The dissemination of disinformation and the occurrence of attacks within these networks can result in severe damage and compromise the overall security of transportation systems. To mitigate such challenges, this paper presents an efficient certificateless aggregate signature scheme with dynamic revocation in VANETs. Taking use of the early-stopping factorial bitwise divisions (EFBD) algorithm, it achieves the invalid signatures tracking, and revokes the malicious vehicles dynamically. In addition, by combining the fingerprint counting bloom filter (FP-CBF), the trust assessment mechanism and the cloud server, it enables the vehicle to remedy its incorrect signatures. At last, through the comprehensive security and performance analysis, it demonstrates that this protocol enjoys improved communication security and computational efficiency.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.