Richard J Harris, Craig J Challen, Simon J Mitchell
{"title":"The first deep rebreather dive using hydrogen: case report.","authors":"Richard J Harris, Craig J Challen, Simon J Mitchell","doi":"10.28920/dhm54.1.65-68","DOIUrl":null,"url":null,"abstract":"<p><p>Bounce diving with rapid descents to very deep depths may provoke the high-pressure neurological syndrome (HPNS). The strategy of including small fractions of nitrogen in the respired gas to produce an anti-HPNS narcotic effect increases the gas density which may exceed recommended guidelines. In 2020 the 'Wetmules' dive team explored the Pearse Resurgence cave (New Zealand) to 245 m breathing trimix (approximately 4% oxygen, 91% helium and 5% nitrogen). Despite the presence of nitrogen, one diver experienced HPNS tremors beyond 200 m. The use of hydrogen (a light yet slightly narcotic gas) has been suggested as a solution to this problem but there are concerns, including the potential for ignition and explosion of hydrogen-containing gases, and accelerated heat loss. In February 2023 a single dive to 230 m was conducted in the Pearse Resurgence to experience hydrogen as a breathing gas in a deep bounce dive. Using an electronic closed-circuit rebreather, helihydrox (approximately 3% oxygen, 59% helium and 38% hydrogen) was breathed between 200 and 230 m. This was associated with amelioration of HPNS symptoms in the vulnerable diver and no obvious adverse effects. The use of hydrogen is a potential means of progressing deeper with effective HPNS amelioration while maintaining respired gas density within advised guidelines.</p>","PeriodicalId":11296,"journal":{"name":"Diving and hyperbaric medicine","volume":"54 1","pages":"69-72"},"PeriodicalIF":0.8000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065502/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diving and hyperbaric medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.28920/dhm54.1.65-68","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Bounce diving with rapid descents to very deep depths may provoke the high-pressure neurological syndrome (HPNS). The strategy of including small fractions of nitrogen in the respired gas to produce an anti-HPNS narcotic effect increases the gas density which may exceed recommended guidelines. In 2020 the 'Wetmules' dive team explored the Pearse Resurgence cave (New Zealand) to 245 m breathing trimix (approximately 4% oxygen, 91% helium and 5% nitrogen). Despite the presence of nitrogen, one diver experienced HPNS tremors beyond 200 m. The use of hydrogen (a light yet slightly narcotic gas) has been suggested as a solution to this problem but there are concerns, including the potential for ignition and explosion of hydrogen-containing gases, and accelerated heat loss. In February 2023 a single dive to 230 m was conducted in the Pearse Resurgence to experience hydrogen as a breathing gas in a deep bounce dive. Using an electronic closed-circuit rebreather, helihydrox (approximately 3% oxygen, 59% helium and 38% hydrogen) was breathed between 200 and 230 m. This was associated with amelioration of HPNS symptoms in the vulnerable diver and no obvious adverse effects. The use of hydrogen is a potential means of progressing deeper with effective HPNS amelioration while maintaining respired gas density within advised guidelines.
期刊介绍:
Diving and Hyperbaric Medicine (DHM) is the combined journal of the South Pacific Underwater Medicine Society (SPUMS) and the European Underwater and Baromedical Society (EUBS). It seeks to publish papers of high quality on all aspects of diving and hyperbaric medicine of interest to diving medical professionals, physicians of all specialties, scientists, members of the diving and hyperbaric industries, and divers. Manuscripts must be offered exclusively to Diving and Hyperbaric Medicine, unless clearly authenticated copyright exemption accompaniesthe manuscript. All manuscripts will be subject to peer review. Accepted contributions will also be subject to editing.