{"title":"Mechanical and Architectural Changes in Animal Bone Following Fast Neutron Irradiation.","authors":"Eduardo Galiano, Jinlu Liu, Beide Ren, Penghao Xu","doi":"10.1097/HP.0000000000001811","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Damage to healthy bone following exposure to ionizing radiation has been well documented for at least seven decades. Among the reported effects are a transient increase in stiffness and a reduction in breaking strength. These changes have been linked to a decrease in osteoblast proliferation and differentiation, inducing cell cycle arrest, reducing collagen production, and increasing sensitivity to apoptotic agents. In this work, we analyzed some mechanical and structural changes in compact costal bovine bone (Hereford breed, n = 9) subjected to escalating doses of fast neutrons from a 7 Li(p,n) 7 Be reaction. The mean neutron energy was 233 keV with calculated absorbed doses ranging from 0 to 4.05 ± 10% Gy. Samples were subjected to Young's Modulus (YM) and breaking strength testing with a Universal Testing Machine (UTM). We found an increase in Young's Modulus and a decrease in breaking strength as functions of increasing dose equivalent. Optical coherence tomography (OCT) revealed trabecular displacement into compact bone in an irradiated sample (D = 4.05 ± 10% Gy), with breaching of the endosteal wall. OCT further revealed a \"crack-like\" structure across the irradiated sample, potentially consistent with damage from a proton track resulting from an elastic (n,p) reaction. No previous report has been found on mechanical changes in large mammalian bones following fast neutron doses, nor of the OCT imaging of such samples.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"298-305"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001811","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Damage to healthy bone following exposure to ionizing radiation has been well documented for at least seven decades. Among the reported effects are a transient increase in stiffness and a reduction in breaking strength. These changes have been linked to a decrease in osteoblast proliferation and differentiation, inducing cell cycle arrest, reducing collagen production, and increasing sensitivity to apoptotic agents. In this work, we analyzed some mechanical and structural changes in compact costal bovine bone (Hereford breed, n = 9) subjected to escalating doses of fast neutrons from a 7 Li(p,n) 7 Be reaction. The mean neutron energy was 233 keV with calculated absorbed doses ranging from 0 to 4.05 ± 10% Gy. Samples were subjected to Young's Modulus (YM) and breaking strength testing with a Universal Testing Machine (UTM). We found an increase in Young's Modulus and a decrease in breaking strength as functions of increasing dose equivalent. Optical coherence tomography (OCT) revealed trabecular displacement into compact bone in an irradiated sample (D = 4.05 ± 10% Gy), with breaching of the endosteal wall. OCT further revealed a "crack-like" structure across the irradiated sample, potentially consistent with damage from a proton track resulting from an elastic (n,p) reaction. No previous report has been found on mechanical changes in large mammalian bones following fast neutron doses, nor of the OCT imaging of such samples.
期刊介绍:
Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.