Machine learning models for classifying non-specific neck pain using craniocervical posture and movement

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-03-19 DOI:10.1016/j.msksp.2024.102945
Ui-jae Hwang , Oh-yun Kwon , Jun-hee Kim , Sejung Yang
{"title":"Machine learning models for classifying non-specific neck pain using craniocervical posture and movement","authors":"Ui-jae Hwang ,&nbsp;Oh-yun Kwon ,&nbsp;Jun-hee Kim ,&nbsp;Sejung Yang","doi":"10.1016/j.msksp.2024.102945","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Physical therapists and clinicians commonly confirm craniocervical posture (CCP), cervical retraction, and craniocervical flexion as screening tests because they contribute to non-specific neck pain (NSNP). We compared the predictive performance of statistical machine learning (ML) models for classifying individuals with and without NSNP using datasets containing CCP and cervical kinematics during pro- and retraction (CKdPR).</p></div><div><h3>Design</h3><p>Exploratory, cross-sectional design.</p></div><div><h3>Setting and participants</h3><p>In total, 773 public service office workers (PSOWs) were screened for eligibility (NSNP, 441; without NSNP, 332).</p></div><div><h3>Methods</h3><p>We set up five datasets (CCP, cervical kinematics during the protraction, cervical kinematics during the retraction, CKdPR and combination of the CCP and CKdPR). Four ML algorithms–random forest, logistic regression, Extreme Gradient boosting, and support vector machine–were trained.</p></div><div><h3>Main outcome measures</h3><p>Model performance were assessed using area under the curve (AUC), accuracy, precision, recall and F1-score. To interpret the predictions, we used Feature permutation importance and SHapley Additive explanation values.</p></div><div><h3>Results</h3><p>The random forest model in the CKdPR dataset classified PSOWs with and without NSNP and achieved the best AUC among the five datasets using the test data (AUC, 0.892 [good]; F1, 0.832). The random forest model in the CCP dataset had the worst AUC among the five datasets using the test data [AUC, 0.738 (fair); F1, 0.715].</p></div><div><h3>Conclusion</h3><p>ML performance was higher for the CKdPR dataset than for the CCP dataset, suggesting that ML algorithms are more suitable than classical statistical methods for developing robust models for classifying PSOWs with and without NSNP.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468781224000407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Physical therapists and clinicians commonly confirm craniocervical posture (CCP), cervical retraction, and craniocervical flexion as screening tests because they contribute to non-specific neck pain (NSNP). We compared the predictive performance of statistical machine learning (ML) models for classifying individuals with and without NSNP using datasets containing CCP and cervical kinematics during pro- and retraction (CKdPR).

Design

Exploratory, cross-sectional design.

Setting and participants

In total, 773 public service office workers (PSOWs) were screened for eligibility (NSNP, 441; without NSNP, 332).

Methods

We set up five datasets (CCP, cervical kinematics during the protraction, cervical kinematics during the retraction, CKdPR and combination of the CCP and CKdPR). Four ML algorithms–random forest, logistic regression, Extreme Gradient boosting, and support vector machine–were trained.

Main outcome measures

Model performance were assessed using area under the curve (AUC), accuracy, precision, recall and F1-score. To interpret the predictions, we used Feature permutation importance and SHapley Additive explanation values.

Results

The random forest model in the CKdPR dataset classified PSOWs with and without NSNP and achieved the best AUC among the five datasets using the test data (AUC, 0.892 [good]; F1, 0.832). The random forest model in the CCP dataset had the worst AUC among the five datasets using the test data [AUC, 0.738 (fair); F1, 0.715].

Conclusion

ML performance was higher for the CKdPR dataset than for the CCP dataset, suggesting that ML algorithms are more suitable than classical statistical methods for developing robust models for classifying PSOWs with and without NSNP.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用颅颈姿势和运动对非特异性颈痛进行分类的机器学习模型
物理治疗师和临床医生通常会将颅颈姿势(CCP)、颈椎后缩和颅颈屈曲确认为筛查测试,因为它们会导致非特异性颈痛(NSNP)。我们比较了统计机器学习(ML)模型的预测性能,这些模型使用包含 CCP 和颈椎前伸与后缩运动学(CKdPR)的数据集对患有和不患有非特异性颈痛的人进行分类。探索性横断面设计。共有 773 名公共服务办公室工作人员(PSOW)接受了资格筛查(NSNP,441 人;无 NSNP,332 人)。我们建立了五个数据集(CCP、牵引时的颈椎运动学数据、牵引时的颈椎运动学数据、CKdPR 以及 CCP 和 CKdPR 的组合)。训练了四种 ML 算法--随机森林、逻辑回归、极梯度提升和支持向量机。使用曲线下面积(AUC)、准确率、精确率、召回率和 F1 分数评估模型性能。为了解释预测结果,我们使用了特征置换重要性(Feature permutation importance)和SHapley加性解释值(SHapley Additive explanation values)。CKdPR 数据集中的随机森林模型对含有和不含 NSNP 的 PSOW 进行了分类,并在使用测试数据的五个数据集中获得了最佳的 AUC(AUC,0.892 [良好];F1,0.832)。在使用测试数据的五个数据集中,CCP 数据集中的随机森林模型的 AUC 最差[AUC,0.738(尚可);F1,0.715]。CKdPR 数据集的 ML 性能高于 CCP 数据集,这表明 ML 算法比传统统计方法更适合开发稳健的模型,用于对有无 NSNP 的 PSOW 进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1