Electrocaloric effects at a phase transition created by strain

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nature Materials Pub Date : 2024-03-21 DOI:10.1038/s41563-024-01836-w
{"title":"Electrocaloric effects at a phase transition created by strain","authors":"","doi":"10.1038/s41563-024-01836-w","DOIUrl":null,"url":null,"abstract":"Electrocaloric effects have not hitherto been experimentally studied at a phase transition created by strain. It is now shown that the continuous transition created by epitaxial strain in strontium titanate films greatly enhances electrocaloric effects over a wide range of temperatures, including room temperature.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":null,"pages":null},"PeriodicalIF":37.2000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-024-01836-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocaloric effects have not hitherto been experimentally studied at a phase transition created by strain. It is now shown that the continuous transition created by epitaxial strain in strontium titanate films greatly enhances electrocaloric effects over a wide range of temperatures, including room temperature.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由应变产生的相变中的电化学效应
迄今为止,尚未对应变产生的相变进行过电致发光效应的实验研究。现在的研究表明,钛酸锶薄膜中通过外延应变产生的连续转变在包括室温在内的广泛温度范围内大大增强了电致发光效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
期刊最新文献
Perovskite microcavities spin the light Coherent optical spin Hall transport for polaritonics at room temperature Colossal room-temperature non-reciprocal Hall effect Substantial oxygen loss and chemical expansion in lithium-rich layered oxides at moderate delithiation Designing flexible mechanical metamaterials with complex functionalities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1