首页 > 最新文献

Nature Materials最新文献

英文 中文
Ions shaping the mechanics of chromosomes in mitosis 离子在有丝分裂过程中塑造染色体的机械结构
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-29 DOI: 10.1038/s41563-024-02030-8
Wenmao Huang, Zongqing Lim, Jie Yan
Ions play a key role in governing the viscoelastic properties and mechanical stability of mitotic chromosomes.
离子在调节有丝分裂染色体的粘弹性和机械稳定性方面起着关键作用。
{"title":"Ions shaping the mechanics of chromosomes in mitosis","authors":"Wenmao Huang, Zongqing Lim, Jie Yan","doi":"10.1038/s41563-024-02030-8","DOIUrl":"10.1038/s41563-024-02030-8","url":null,"abstract":"Ions play a key role in governing the viscoelastic properties and mechanical stability of mitotic chromosomes.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1468-1470"},"PeriodicalIF":37.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensing the force in living embryos 感知活胚胎中的力量
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-29 DOI: 10.1038/s41563-024-02033-5
Kristian Franze
Spring-like force sensors bioprinted in the developing neural tube of growing chick embryos enable the measurement of forces generated by embryonic tissues with micrometre-level resolution.
在发育中的小鸡胚胎神经管中生物打印的弹簧状力传感器能够以微米级的分辨率测量胚胎组织产生的力。
{"title":"Sensing the force in living embryos","authors":"Kristian Franze","doi":"10.1038/s41563-024-02033-5","DOIUrl":"10.1038/s41563-024-02033-5","url":null,"abstract":"Spring-like force sensors bioprinted in the developing neural tube of growing chick embryos enable the measurement of forces generated by embryonic tissues with micrometre-level resolution.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1471-1472"},"PeriodicalIF":37.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultraflat hexagonal boron nitride for high-κ dielectric integration 用于高κ介电集成的超扁平六方氮化硼
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-29 DOI: 10.1038/s41563-024-02013-9
Hayoung Ko, Seungjin Lee, Ki Kang Kim
An ultraflat, single-crystal hexagonal boron nitride film enables the production of wafer-scale, ultrathin high-κ dielectrics for two-dimensional electronics, meeting the 2025 targets set by the International Roadmap for Devices and Systems.
一种超扁平单晶六方氮化硼薄膜能够生产晶圆级超薄高κ电介质,用于二维电子器件,从而实现国际器件与系统路线图设定的 2025 年目标。
{"title":"Ultraflat hexagonal boron nitride for high-κ dielectric integration","authors":"Hayoung Ko, Seungjin Lee, Ki Kang Kim","doi":"10.1038/s41563-024-02013-9","DOIUrl":"10.1038/s41563-024-02013-9","url":null,"abstract":"An ultraflat, single-crystal hexagonal boron nitride film enables the production of wafer-scale, ultrathin high-κ dielectrics for two-dimensional electronics, meeting the 2025 targets set by the International Roadmap for Devices and Systems.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1461-1462"},"PeriodicalIF":37.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trace benzene capture by decoration of structural defects in metal–organic framework materials 通过装饰金属有机框架材料的结构缺陷捕获痕量苯
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-29 DOI: 10.1038/s41563-024-02029-1
Yu Han, Wenyuan Huang, Meng He, Bing An, Yinlin Chen, Xue Han, Lan An, Meredydd Kippax-Jones, Jiangnan Li, Yuhang Yang, Mark D. Frogley, Cheng Li, Danielle Crawshaw, Pascal Manuel, Svemir Rudić, Yongqiang Cheng, Ian Silverwood, Luke L. Daemen, Anibal J. Ramirez-Cuesta, Sarah J. Day, Stephen P. Thompson, Ben F. Spencer, Marek Nikiel, Daniel Lee, Martin Schröder, Sihai Yang
Capture of trace benzene is an important and challenging task. Metal–organic framework materials are promising sorbents for a variety of gases, but their limited capacity towards benzene at low concentration remains unresolved. Here we report the adsorption of trace benzene by decorating a structural defect in MIL-125-defect with single-atom metal centres to afford MIL-125-X (X = Mn, Fe, Co, Ni, Cu, Zn; MIL-125, Ti8O8(OH)4(BDC)6 where H2BDC is 1,4-benzenedicarboxylic acid). At 298 K, MIL-125-Zn exhibits a benzene uptake of 7.63 mmol g−1 at 1.2 mbar and 5.33 mmol g−1 at 0.12 mbar, and breakthrough experiments confirm the removal of trace benzene (from 5 to <0.5 ppm) from air (up to 111,000 min g−1 of metal–organic framework), even after exposure to moisture. The binding of benzene to the defect and open Zn(II) sites at low pressure has been visualized by diffraction, scattering and spectroscopy. This work highlights the importance of fine-tuning pore chemistry for designing adsorbents for the removal of air pollutants. Benzene is a genotoxic carcinogen with no safe level of exposure. Here, by creating and decorating a structural defect in a metal–organic framework to form MIL-125-Zn, a benzene uptake of 7.63 mmol g–1 at 1.2 mbar is observed due to binding to Zn(II) sites.
捕获痕量苯是一项重要而具有挑战性的任务。金属有机框架材料是一种很有前景的吸附剂,可吸附多种气体,但其对低浓度苯的吸附能力有限,这一问题仍未得到解决。在此,我们报告了通过用单原子金属中心装饰 MIL-125 的结构缺陷,从而得到 MIL-125-X(X = Mn、Fe、Co、Ni、Cu、Zn;MIL-125,Ti8O8(OH)4(BDC)6,其中 H2BDC 为 1,4-苯二甲酸)来吸附痕量苯的情况。在 298 K 时,MIL-125-Zn 在 1.2 毫巴和 0.12 毫巴条件下的苯吸收率分别为 7.63 毫摩尔/克和 5.33 毫摩尔/克,突破实验证实,即使暴露在潮湿环境中,也能从空气中去除痕量苯(从 5 ppm 到 0.5 ppm)(金属有机框架的去除率高达 111,000 分钟/克)。通过衍射、散射和光谱分析,可以看到苯在低压下与缺陷和开放的 Zn(II)位点结合的情况。这项工作强调了微调孔化学性质对于设计去除空气污染物的吸附剂的重要性。
{"title":"Trace benzene capture by decoration of structural defects in metal–organic framework materials","authors":"Yu Han,&nbsp;Wenyuan Huang,&nbsp;Meng He,&nbsp;Bing An,&nbsp;Yinlin Chen,&nbsp;Xue Han,&nbsp;Lan An,&nbsp;Meredydd Kippax-Jones,&nbsp;Jiangnan Li,&nbsp;Yuhang Yang,&nbsp;Mark D. Frogley,&nbsp;Cheng Li,&nbsp;Danielle Crawshaw,&nbsp;Pascal Manuel,&nbsp;Svemir Rudić,&nbsp;Yongqiang Cheng,&nbsp;Ian Silverwood,&nbsp;Luke L. Daemen,&nbsp;Anibal J. Ramirez-Cuesta,&nbsp;Sarah J. Day,&nbsp;Stephen P. Thompson,&nbsp;Ben F. Spencer,&nbsp;Marek Nikiel,&nbsp;Daniel Lee,&nbsp;Martin Schröder,&nbsp;Sihai Yang","doi":"10.1038/s41563-024-02029-1","DOIUrl":"10.1038/s41563-024-02029-1","url":null,"abstract":"Capture of trace benzene is an important and challenging task. Metal–organic framework materials are promising sorbents for a variety of gases, but their limited capacity towards benzene at low concentration remains unresolved. Here we report the adsorption of trace benzene by decorating a structural defect in MIL-125-defect with single-atom metal centres to afford MIL-125-X (X = Mn, Fe, Co, Ni, Cu, Zn; MIL-125, Ti8O8(OH)4(BDC)6 where H2BDC is 1,4-benzenedicarboxylic acid). At 298 K, MIL-125-Zn exhibits a benzene uptake of 7.63 mmol g−1 at 1.2 mbar and 5.33 mmol g−1 at 0.12 mbar, and breakthrough experiments confirm the removal of trace benzene (from 5 to &lt;0.5 ppm) from air (up to 111,000 min g−1 of metal–organic framework), even after exposure to moisture. The binding of benzene to the defect and open Zn(II) sites at low pressure has been visualized by diffraction, scattering and spectroscopy. This work highlights the importance of fine-tuning pore chemistry for designing adsorbents for the removal of air pollutants. Benzene is a genotoxic carcinogen with no safe level of exposure. Here, by creating and decorating a structural defect in a metal–organic framework to form MIL-125-Zn, a benzene uptake of 7.63 mmol g–1 at 1.2 mbar is observed due to binding to Zn(II) sites.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1531-1538"},"PeriodicalIF":37.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41563-024-02029-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tissues pushing on 组织推动
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-29 DOI: 10.1038/s41563-024-02050-4
Studies are shedding light on the mechanical properties of cellular tissues and their implications for biological processes.
研究揭示了细胞组织的机械特性及其对生物过程的影响。
{"title":"Tissues pushing on","authors":"","doi":"10.1038/s41563-024-02050-4","DOIUrl":"10.1038/s41563-024-02050-4","url":null,"abstract":"Studies are shedding light on the mechanical properties of cellular tissues and their implications for biological processes.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1457-1457"},"PeriodicalIF":37.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41563-024-02050-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rupture strength of living cell monolayers 活细胞单层的断裂强度
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-28 DOI: 10.1038/s41563-024-02027-3
Julia Duque, Alessandra Bonfanti, Jonathan Fouchard, Lucia Baldauf, Sara R. Azenha, Emma Ferber, Andrew Harris, Elias H. Barriga, Alexandre J. Kabla, Guillaume Charras
To fulfil their function, epithelial tissues need to sustain mechanical stresses and avoid rupture. Although rupture is usually undesired, it is central to some developmental processes, for example, blastocoel formation. Nonetheless, little is known about tissue rupture because it is a multiscale phenomenon that necessitates comprehension of the interplay between mechanical forces and biological processes at the molecular and cellular scales. Here we characterize rupture in epithelial monolayers using mechanical measurements, live imaging and computational modelling. We show that despite consisting of only a single layer of cells, monolayers can withstand surprisingly large deformations, often accommodating several-fold increases in their length before rupture. At large deformation, epithelia increase their stiffness multiple fold in a process controlled by a supracellular network of keratin filaments. Perturbing the keratin network organization fragilized the monolayers and prevented strain-stiffening. Although the kinetics of adhesive bond rupture ultimately control tissue strength, tissue rheology and the history of deformation set the strain and stress at the onset of fracture. Tissue monolayers avoid rupture at large tensile stresses through a strain-stiffening process governed by intermediate keratin filaments.
上皮组织需要承受机械应力并避免破裂,才能发挥其功能。虽然破裂通常是不希望发生的,但它却是某些发育过程的核心,例如胚泡的形成。然而,人们对组织破裂知之甚少,因为它是一种多尺度现象,需要理解机械力与分子和细胞尺度的生物过程之间的相互作用。在这里,我们利用机械测量、实时成像和计算建模来描述上皮单层破裂的特征。我们发现,尽管上皮单层细胞只有一层,但却能承受惊人的大变形,在破裂前其长度往往能承受数倍的增长。在大变形时,上皮细胞的硬度会增加数倍,这一过程由细胞上的角蛋白丝网络控制。扰乱角蛋白网络组织会使单层变得脆弱,并阻止应变加固。虽然粘合剂断裂的动力学最终控制了组织强度,但组织流变学和变形历史决定了断裂发生时的应变和应力。
{"title":"Rupture strength of living cell monolayers","authors":"Julia Duque,&nbsp;Alessandra Bonfanti,&nbsp;Jonathan Fouchard,&nbsp;Lucia Baldauf,&nbsp;Sara R. Azenha,&nbsp;Emma Ferber,&nbsp;Andrew Harris,&nbsp;Elias H. Barriga,&nbsp;Alexandre J. Kabla,&nbsp;Guillaume Charras","doi":"10.1038/s41563-024-02027-3","DOIUrl":"10.1038/s41563-024-02027-3","url":null,"abstract":"To fulfil their function, epithelial tissues need to sustain mechanical stresses and avoid rupture. Although rupture is usually undesired, it is central to some developmental processes, for example, blastocoel formation. Nonetheless, little is known about tissue rupture because it is a multiscale phenomenon that necessitates comprehension of the interplay between mechanical forces and biological processes at the molecular and cellular scales. Here we characterize rupture in epithelial monolayers using mechanical measurements, live imaging and computational modelling. We show that despite consisting of only a single layer of cells, monolayers can withstand surprisingly large deformations, often accommodating several-fold increases in their length before rupture. At large deformation, epithelia increase their stiffness multiple fold in a process controlled by a supracellular network of keratin filaments. Perturbing the keratin network organization fragilized the monolayers and prevented strain-stiffening. Although the kinetics of adhesive bond rupture ultimately control tissue strength, tissue rheology and the history of deformation set the strain and stress at the onset of fracture. Tissue monolayers avoid rupture at large tensile stresses through a strain-stiffening process governed by intermediate keratin filaments.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1563-1574"},"PeriodicalIF":37.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41563-024-02027-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing flexible mechanical metamaterials with complex functionalities 设计具有复杂功能的柔性机械超材料
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-17 DOI: 10.1038/s41563-024-02022-8
Gary P. T. Choi
A technique has been developed for automatically discovering mechanical metamaterials with desired nonlinear dynamic responses.
我们开发了一种技术,用于自动发现具有理想非线性动态响应的机械超材料。
{"title":"Designing flexible mechanical metamaterials with complex functionalities","authors":"Gary P. T. Choi","doi":"10.1038/s41563-024-02022-8","DOIUrl":"10.1038/s41563-024-02022-8","url":null,"abstract":"A technique has been developed for automatically discovering mechanical metamaterials with desired nonlinear dynamic responses.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1458-1460"},"PeriodicalIF":37.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tunable spin–orbit physics in van der Waals heterostructures 范德华异质结构中的可调谐自旋轨道物理学
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-09 DOI: 10.1038/s41563-024-02018-4
Mikhail I. Katsnelson
Twist-angle control of spin–charge interconversion in a graphene/WSe2 heterostructure is demonstrated.
演示了石墨烯/WSe2 异质结构中自旋电荷互转的扭角控制。
{"title":"Tunable spin–orbit physics in van der Waals heterostructures","authors":"Mikhail I. Katsnelson","doi":"10.1038/s41563-024-02018-4","DOIUrl":"10.1038/s41563-024-02018-4","url":null,"abstract":"Twist-angle control of spin–charge interconversion in a graphene/WSe2 heterostructure is demonstrated.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1463-1464"},"PeriodicalIF":37.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jamming of nephron-forming niches in the developing mouse kidney creates cyclical mechanical stresses 发育中的小鼠肾脏中肾小球形成龛位的干扰会产生周期性机械应力
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-10-09 DOI: 10.1038/s41563-024-02019-3
Louis S. Prahl, Jiageng Liu, John M. Viola, Aria Zheyuan Huang, Trevor J. Chan, Gabriela Hayward-Lara, Catherine M. Porter, Chenjun Shi, Jitao Zhang, Alex J. Hughes
Urinary collecting tubules form during kidney embryogenesis through the branching of the ureteric bud epithelium. A travelling mesenchyme niche of nephron progenitor cells caps each branching ureteric bud tip. These ‘tip domain’ niches pack more closely over developmental time and their number relates to nephron endowment at birth. Yet, how the crowded tissue environment impacts niche number and cell decision-making remains unclear. Here, through experiments and mathematical modelling, we show that niche packing conforms to physical limitations imposed by kidney curvature. We relate packing geometries to rigidity theory to predict a stiffening transition starting at embryonic day 15 in the mouse, validated by micromechanical analysis. Using a method to estimate tip domain ‘ages’ relative to their most recent branch events, we find that new niches overcome mechanical resistance as they branch and displace neighbours. This creates rhythmic mechanical stress in the niche. These findings expand our understanding of kidney development and inform engineering strategies for synthetic regenerative tissues. Geometric packing of tubules in the developing kidney urinary collecting system leads to tissue stiffening and rhythmic mechanical stresses local to nephron-forming niches that synchronize with tubule branching.
肾脏胚胎发育过程中,输尿管芽上皮细胞分支形成集尿小管。每个输尿管芽的分支顶端都有一个由肾脏祖细胞组成的游动间质龛。随着发育时间的推移,这些 "顶端域 "壁龛会更紧密地聚集在一起,它们的数量与出生时肾小球的禀赋有关。然而,拥挤的组织环境如何影响壁龛数量和细胞决策仍不清楚。在这里,通过实验和数学建模,我们证明了肾小球龛包装符合肾脏曲率所施加的物理限制。我们将包装几何形状与刚度理论联系起来,预测了小鼠胚胎第 15 天开始的僵化转变,并通过微机械分析进行了验证。我们使用一种方法来估算顶端结构域相对于其最近分支事件的 "年龄",结果发现新的壁龛在分支并取代邻近壁龛时会克服机械阻力。这就在龛中产生了有节奏的机械应力。这些发现拓展了我们对肾脏发育的理解,并为合成再生组织的工程策略提供了信息。
{"title":"Jamming of nephron-forming niches in the developing mouse kidney creates cyclical mechanical stresses","authors":"Louis S. Prahl,&nbsp;Jiageng Liu,&nbsp;John M. Viola,&nbsp;Aria Zheyuan Huang,&nbsp;Trevor J. Chan,&nbsp;Gabriela Hayward-Lara,&nbsp;Catherine M. Porter,&nbsp;Chenjun Shi,&nbsp;Jitao Zhang,&nbsp;Alex J. Hughes","doi":"10.1038/s41563-024-02019-3","DOIUrl":"10.1038/s41563-024-02019-3","url":null,"abstract":"Urinary collecting tubules form during kidney embryogenesis through the branching of the ureteric bud epithelium. A travelling mesenchyme niche of nephron progenitor cells caps each branching ureteric bud tip. These ‘tip domain’ niches pack more closely over developmental time and their number relates to nephron endowment at birth. Yet, how the crowded tissue environment impacts niche number and cell decision-making remains unclear. Here, through experiments and mathematical modelling, we show that niche packing conforms to physical limitations imposed by kidney curvature. We relate packing geometries to rigidity theory to predict a stiffening transition starting at embryonic day 15 in the mouse, validated by micromechanical analysis. Using a method to estimate tip domain ‘ages’ relative to their most recent branch events, we find that new niches overcome mechanical resistance as they branch and displace neighbours. This creates rhythmic mechanical stress in the niche. These findings expand our understanding of kidney development and inform engineering strategies for synthetic regenerative tissues. Geometric packing of tubules in the developing kidney urinary collecting system leads to tissue stiffening and rhythmic mechanical stresses local to nephron-forming niches that synchronize with tubule branching.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 11","pages":"1582-1591"},"PeriodicalIF":37.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Squirting-cucumber-inspired miniature explosive hydrogel launcher 受黄瓜启发的微型水凝胶爆炸物发射器
IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-09-30 DOI: 10.1038/s41563-024-02005-9
Haitao Qing, Fangjie Qi, Jie Yin
A miniature hydrogel launcher inspired by the squirting cucumber achieves record-high jumping height through water evaporation and fracture-driven power amplification.
受喷水黄瓜启发的微型水凝胶发射器通过水蒸发和断裂驱动的功率放大实现了创纪录的跳跃高度。
{"title":"Squirting-cucumber-inspired miniature explosive hydrogel launcher","authors":"Haitao Qing,&nbsp;Fangjie Qi,&nbsp;Jie Yin","doi":"10.1038/s41563-024-02005-9","DOIUrl":"10.1038/s41563-024-02005-9","url":null,"abstract":"A miniature hydrogel launcher inspired by the squirting cucumber achieves record-high jumping height through water evaporation and fracture-driven power amplification.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 10","pages":"1315-1317"},"PeriodicalIF":37.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1