Isabella Crisci, Sara Bonzano, Zinter Nicolas, Eleonora Dallorto, Paolo Peretto, Wojciech Krezel, Silvia De Marchis
{"title":"Tamoxifen exerts direct and microglia-mediated effects preventing neuroinflammatory changes in the adult mouse hippocampal neurogenic niche","authors":"Isabella Crisci, Sara Bonzano, Zinter Nicolas, Eleonora Dallorto, Paolo Peretto, Wojciech Krezel, Silvia De Marchis","doi":"10.1002/glia.24526","DOIUrl":null,"url":null,"abstract":"<p>Tamoxifen-inducible systems are widely used in research to control Cre-mediated gene deletion in genetically modified animals. Beyond Cre activation, tamoxifen also exerts off-target effects, whose consequences are still poorly addressed. Here, we investigated the impact of tamoxifen on lipopolysaccharide (LPS)-induced neuroinflammatory responses, focusing on the neurogenic activity in the adult mouse dentate gyrus. We demonstrated that a four-day LPS treatment led to an increase in microglia, astrocytes and radial glial cells with concomitant reduction of newborn neurons. These effects were counteracted by a two-day tamoxifen pre-treatment. Through selective microglia depletion, we elucidated that both LPS and tamoxifen influenced astrogliogenesis via microglia mediated mechanisms, while the effects on neurogenesis persisted even in a microglia-depleted environment. Notably, changes in radial glial cells resulted from a combination of microglia-dependent and -independent mechanisms. Overall, our data reveal that tamoxifen treatment per se does not alter the balance between adult neurogenesis and astrogliogenesis but does modulate cellular responses to inflammatory stimuli exerting a protective role within the adult hippocampal neurogenic niche.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 7","pages":"1273-1289"},"PeriodicalIF":5.4000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/glia.24526","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Tamoxifen-inducible systems are widely used in research to control Cre-mediated gene deletion in genetically modified animals. Beyond Cre activation, tamoxifen also exerts off-target effects, whose consequences are still poorly addressed. Here, we investigated the impact of tamoxifen on lipopolysaccharide (LPS)-induced neuroinflammatory responses, focusing on the neurogenic activity in the adult mouse dentate gyrus. We demonstrated that a four-day LPS treatment led to an increase in microglia, astrocytes and radial glial cells with concomitant reduction of newborn neurons. These effects were counteracted by a two-day tamoxifen pre-treatment. Through selective microglia depletion, we elucidated that both LPS and tamoxifen influenced astrogliogenesis via microglia mediated mechanisms, while the effects on neurogenesis persisted even in a microglia-depleted environment. Notably, changes in radial glial cells resulted from a combination of microglia-dependent and -independent mechanisms. Overall, our data reveal that tamoxifen treatment per se does not alter the balance between adult neurogenesis and astrogliogenesis but does modulate cellular responses to inflammatory stimuli exerting a protective role within the adult hippocampal neurogenic niche.
期刊介绍:
GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.