首页 > 最新文献

Glia最新文献

英文 中文
Correction to "Early Nuclear Phenotypes and Reactive Transformation in Human iPSC-Derived Astrocytes From ALS Patients With SOD1 Mutations".
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-17 DOI: 10.1002/glia.70003
{"title":"Correction to \"Early Nuclear Phenotypes and Reactive Transformation in Human iPSC-Derived Astrocytes From ALS Patients With SOD1 Mutations\".","authors":"","doi":"10.1002/glia.70003","DOIUrl":"https://doi.org/10.1002/glia.70003","url":null,"abstract":"","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Fragile X Messenger Ribonucleoprotein 1 Regulates the Morphology and Maturation of Human and Rat Oligodendrocytes.
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-10 DOI: 10.1002/glia.24680
Vidya Ramesh, Eleni Tsoukala, Ioanna Kougianou, Zrinko Kozic, Karen Burr, Biju Viswanath, David Hampton, David Story, Bharath Kumar Reddy, Rakhi Pal, Owen Dando, Peter C Kind, Sumantra Chattarji, Bhuvaneish T Selvaraj, Siddharthan Chandran, Lida Zoupi

The Fragile X Messenger Ribonucleoprotein (FMRP) is an RNA binding protein that regulates the translation of multiple mRNAs and is expressed by neurons and glia in the mammalian brain. Loss of FMRP leads to fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. While most research has been focusing on the neuronal contribution to FXS pathophysiology, the role of glia, particularly oligodendrocytes, is largely unknown. FXS individuals are characterized by white matter changes, which imply impairments in oligodendrocyte differentiation and myelination. We hypothesized that FMRP regulates oligodendrocyte maturation and myelination during postnatal development. Using a combination of human pluripotent stem cell-derived oligodendrocytes and an Fmr1 knockout rat model, we studied the role of FMRP on mammalian oligodendrocyte development. We found that the loss of FMRP leads to shared defects in oligodendrocyte morphology in both rat and human systems in vitro, which persist in the presence of FMRP-expressing axons in chimeric engraftment models. Our findings point to species-conserved, cell-autonomous defects during oligodendrocyte maturation in FXS.

{"title":"The Fragile X Messenger Ribonucleoprotein 1 Regulates the Morphology and Maturation of Human and Rat Oligodendrocytes.","authors":"Vidya Ramesh, Eleni Tsoukala, Ioanna Kougianou, Zrinko Kozic, Karen Burr, Biju Viswanath, David Hampton, David Story, Bharath Kumar Reddy, Rakhi Pal, Owen Dando, Peter C Kind, Sumantra Chattarji, Bhuvaneish T Selvaraj, Siddharthan Chandran, Lida Zoupi","doi":"10.1002/glia.24680","DOIUrl":"https://doi.org/10.1002/glia.24680","url":null,"abstract":"<p><p>The Fragile X Messenger Ribonucleoprotein (FMRP) is an RNA binding protein that regulates the translation of multiple mRNAs and is expressed by neurons and glia in the mammalian brain. Loss of FMRP leads to fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. While most research has been focusing on the neuronal contribution to FXS pathophysiology, the role of glia, particularly oligodendrocytes, is largely unknown. FXS individuals are characterized by white matter changes, which imply impairments in oligodendrocyte differentiation and myelination. We hypothesized that FMRP regulates oligodendrocyte maturation and myelination during postnatal development. Using a combination of human pluripotent stem cell-derived oligodendrocytes and an Fmr1 knockout rat model, we studied the role of FMRP on mammalian oligodendrocyte development. We found that the loss of FMRP leads to shared defects in oligodendrocyte morphology in both rat and human systems in vitro, which persist in the presence of FMRP-expressing axons in chimeric engraftment models. Our findings point to species-conserved, cell-autonomous defects during oligodendrocyte maturation in FXS.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AA147 Alleviates Symptoms in a Mouse Model of Multiple Sclerosis by Reducing Oligodendrocyte Loss.
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-10 DOI: 10.1002/glia.70001
Metin Aksu, Kevin Kaschke, Joseph R Podojil, MingYi Chiang, Ian Steckler, Kody Bruce, Andrew C Cogswell, Gwen Schulz, Jeffery W Kelly, R Luke Wiseman, Stephen D Miller, Brian Popko, Yanan Chen

Inflammation-induced oligodendrocyte death and CNS demyelination are key features of multiple sclerosis (MS). Inflammation-triggered endoplasmic reticulum (ER) stress and oxidative stress promote tissue damage in MS and in its preclinical animal model, experimental autoimmune encephalitis (EAE). Compound AA147 is a potent activator of the ATF6 signaling arm of the unfolded protein response (UPR) that can also induce antioxidant signaling through activation of the NRF2 pathway in neuronal cells. Previous work showed that AA147 protects multiple tissues against ischemia/reperfusion damage through ATF6 and/or NRF2 activation; however, its therapeutic potential in neuroinflammatory disorders remains unexplored. Here, we demonstrate that AA147 ameliorated the clinical symptoms of EAE and reduced ER stress, oligodendrocyte loss, and demyelination. Additionally, AA147 suppressed T cells in the CNS without altering the peripheral immune response. Importantly, AA147 significantly increased the expressions of Grp78, an ATF6 target gene, in oligodendrocytes, while enhancing levels of Grp78 as well as Ho-1, an NRF2 target gene, in microglia. In cultured oligodendrocytes, AA147 promoted nuclear translocation of ATF6, but not NRF2. Intriguingly, AA147 altered the microglia activation profile, possibly by triggering the NRF2 pathway. AA147 was not therapeutically beneficial during the acute EAE stage in mice lacking ATF6 in oligodendrocytes, indicating that protection primarily involves ATF6 activation in these cells. Overall, our results suggest AA147 as a potential therapeutic opportunity for MS by promoting oligodendrocyte survival and regulating microglia status through distinct mechanisms.

{"title":"AA147 Alleviates Symptoms in a Mouse Model of Multiple Sclerosis by Reducing Oligodendrocyte Loss.","authors":"Metin Aksu, Kevin Kaschke, Joseph R Podojil, MingYi Chiang, Ian Steckler, Kody Bruce, Andrew C Cogswell, Gwen Schulz, Jeffery W Kelly, R Luke Wiseman, Stephen D Miller, Brian Popko, Yanan Chen","doi":"10.1002/glia.70001","DOIUrl":"https://doi.org/10.1002/glia.70001","url":null,"abstract":"<p><p>Inflammation-induced oligodendrocyte death and CNS demyelination are key features of multiple sclerosis (MS). Inflammation-triggered endoplasmic reticulum (ER) stress and oxidative stress promote tissue damage in MS and in its preclinical animal model, experimental autoimmune encephalitis (EAE). Compound AA147 is a potent activator of the ATF6 signaling arm of the unfolded protein response (UPR) that can also induce antioxidant signaling through activation of the NRF2 pathway in neuronal cells. Previous work showed that AA147 protects multiple tissues against ischemia/reperfusion damage through ATF6 and/or NRF2 activation; however, its therapeutic potential in neuroinflammatory disorders remains unexplored. Here, we demonstrate that AA147 ameliorated the clinical symptoms of EAE and reduced ER stress, oligodendrocyte loss, and demyelination. Additionally, AA147 suppressed T cells in the CNS without altering the peripheral immune response. Importantly, AA147 significantly increased the expressions of Grp78, an ATF6 target gene, in oligodendrocytes, while enhancing levels of Grp78 as well as Ho-1, an NRF2 target gene, in microglia. In cultured oligodendrocytes, AA147 promoted nuclear translocation of ATF6, but not NRF2. Intriguingly, AA147 altered the microglia activation profile, possibly by triggering the NRF2 pathway. AA147 was not therapeutically beneficial during the acute EAE stage in mice lacking ATF6 in oligodendrocytes, indicating that protection primarily involves ATF6 activation in these cells. Overall, our results suggest AA147 as a potential therapeutic opportunity for MS by promoting oligodendrocyte survival and regulating microglia status through distinct mechanisms.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myelination Trajectory and Microglial Dynamics Following Repeated Sevoflurane Exposure in Developing Brain.
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-10 DOI: 10.1002/glia.70000
Ji Che, Yuanyuan Wu, Jing Dong, Xuliang Jiang, Li Yang, Yali Chen, Jun Zhang

The myelination is a critical process during brain development. This study aimed to explore the impact of volatile anesthetic sevoflurane on developing myelination and the role of microglial activation in this process. Neonatal C57BL/6J mice were exposed to sevoflurane at their postnatal 6-8 days. Neurobehavioral tests were used to assess fine motor and cognitive functions. Myelination of hippocampus (HC) and corpus callosum (CC), as well as microglial activation, were determined by western blotting and immunostaining. Lipid droplets were assessed by Oil-Red-O and Bodipy staining. Further, primary microglia were co-cultured with oligodendrocyte precursor cell (OPC) to determine the role of microglia in the proliferation and differentiation of OPC. And microglial inhibitor minocycline and CSF1R inhibitor PLX5622 were administered to assess the effects of microglial activation on developing myelination. The results showed that repeated sevoflurane exposure impaired both fine motor and cognitive functions and induced abnormal expressions of myelin-related proteins myelin basic protein (MBP) and platelet-derived growth factor α receptor (PDGFR-α). And accumulations of lipid droplets were found in the microglia of HC and CC after sevoflurane exposure. Further, the spatiotemporal response to repeated sevoflurane exposure in glial cells exhibited an aberrant myelination process and microglial polarization. The conditioned medium from sevoflurane-treated microglia inhibited the OPC proliferation and differentiation, while minocycline or PLX5622 alleviated sevoflurane-induced neuroinflammation and hypomyelination. Therefore, repeated sevoflurane exposure negatively affected OPC differentiation and myelination trajectory through hyperactivating microglia in developing brain, leading to motor and cognitive impairments, while microglial inhibition/depletion could protect against sevoflurane-induced damage on developing myelination.

{"title":"Myelination Trajectory and Microglial Dynamics Following Repeated Sevoflurane Exposure in Developing Brain.","authors":"Ji Che, Yuanyuan Wu, Jing Dong, Xuliang Jiang, Li Yang, Yali Chen, Jun Zhang","doi":"10.1002/glia.70000","DOIUrl":"https://doi.org/10.1002/glia.70000","url":null,"abstract":"<p><p>The myelination is a critical process during brain development. This study aimed to explore the impact of volatile anesthetic sevoflurane on developing myelination and the role of microglial activation in this process. Neonatal C57BL/6J mice were exposed to sevoflurane at their postnatal 6-8 days. Neurobehavioral tests were used to assess fine motor and cognitive functions. Myelination of hippocampus (HC) and corpus callosum (CC), as well as microglial activation, were determined by western blotting and immunostaining. Lipid droplets were assessed by Oil-Red-O and Bodipy staining. Further, primary microglia were co-cultured with oligodendrocyte precursor cell (OPC) to determine the role of microglia in the proliferation and differentiation of OPC. And microglial inhibitor minocycline and CSF1R inhibitor PLX5622 were administered to assess the effects of microglial activation on developing myelination. The results showed that repeated sevoflurane exposure impaired both fine motor and cognitive functions and induced abnormal expressions of myelin-related proteins myelin basic protein (MBP) and platelet-derived growth factor α receptor (PDGFR-α). And accumulations of lipid droplets were found in the microglia of HC and CC after sevoflurane exposure. Further, the spatiotemporal response to repeated sevoflurane exposure in glial cells exhibited an aberrant myelination process and microglial polarization. The conditioned medium from sevoflurane-treated microglia inhibited the OPC proliferation and differentiation, while minocycline or PLX5622 alleviated sevoflurane-induced neuroinflammation and hypomyelination. Therefore, repeated sevoflurane exposure negatively affected OPC differentiation and myelination trajectory through hyperactivating microglia in developing brain, leading to motor and cognitive impairments, while microglial inhibition/depletion could protect against sevoflurane-induced damage on developing myelination.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ibudilast Protects Retinal Bipolar Cells From Excitotoxic Retinal Damage and Activates the mTOR Pathway.
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-06 DOI: 10.1002/glia.24657
Sumaya Hamadmad, Tyler Heisler-Taylor, Sandeep Goswami, Evan Hawthorn, Sameer Chaurasia, Dena Martini, Diana Summitt, Ali Zatari, Rahaf Shalash, Misha Sohail, Elizabeth G Urbanski, Kayla Bernstein, Julie Racine, Abhay Satoskar, Heithem M El-Hodiri, Andy J Fischer, Colleen M Cebulla

Ibudilast, an inhibitor of macrophage migration inhibitory factor (MIF) and phosphodiesterase (PDE), has been recently shown to have neuroprotective effects in a variety of neurologic diseases. We utilize a chick excitotoxic retinal damage model to investigate ibudilast's potential to protect retinal neurons. Using single cell RNA-sequencing (scRNA-seq), we find that MIF, putative MIF receptors CD74 and CD44, and several PDEs are upregulated in different retinal cells during damage. Intravitreal ibudilast is well tolerated in the eye and causes no evidence of toxicity. Ibudilast effectively protects neurons in the inner nuclear layer from NMDA-induced cell death, restores retinal layer thickness on spectral domain optical coherence tomography (SD-OCT), and preserves retinal neuron function, particularly for the ON bipolar cells, as assessed by electroretinography. PDE inhibition seems essential for ibudilast's neuroprotection, as AV1013, the analogue that lacks PDE inhibitor activity, is ineffective. scRNA-seq analysis reveals upregulation of multiple signaling pathways, including mTOR, in damaged Müller glia (MG) with ibudilast treatment compared to AV1013. Components of mTORC1 and mTORC2 are upregulated in both bipolar cells and MG with ibudilast. The mTOR inhibitor rapamycin blocked accumulation of pS6 but did not reduce TUNEL positive dying cells. Additionally, through ligand-receptor interaction analysis, crosstalk between bipolar cells and MG may be important for neuroprotection. We have identified several paracrine signaling pathways that are known to contribute to cell survival and neuroprotection and might play essential roles in ibudilast function. These findings highlight ibudilast's potential to protect inner retinal neurons during damage and show promise for future clinical translation.

{"title":"Ibudilast Protects Retinal Bipolar Cells From Excitotoxic Retinal Damage and Activates the mTOR Pathway.","authors":"Sumaya Hamadmad, Tyler Heisler-Taylor, Sandeep Goswami, Evan Hawthorn, Sameer Chaurasia, Dena Martini, Diana Summitt, Ali Zatari, Rahaf Shalash, Misha Sohail, Elizabeth G Urbanski, Kayla Bernstein, Julie Racine, Abhay Satoskar, Heithem M El-Hodiri, Andy J Fischer, Colleen M Cebulla","doi":"10.1002/glia.24657","DOIUrl":"10.1002/glia.24657","url":null,"abstract":"<p><p>Ibudilast, an inhibitor of macrophage migration inhibitory factor (MIF) and phosphodiesterase (PDE), has been recently shown to have neuroprotective effects in a variety of neurologic diseases. We utilize a chick excitotoxic retinal damage model to investigate ibudilast's potential to protect retinal neurons. Using single cell RNA-sequencing (scRNA-seq), we find that MIF, putative MIF receptors CD74 and CD44, and several PDEs are upregulated in different retinal cells during damage. Intravitreal ibudilast is well tolerated in the eye and causes no evidence of toxicity. Ibudilast effectively protects neurons in the inner nuclear layer from NMDA-induced cell death, restores retinal layer thickness on spectral domain optical coherence tomography (SD-OCT), and preserves retinal neuron function, particularly for the ON bipolar cells, as assessed by electroretinography. PDE inhibition seems essential for ibudilast's neuroprotection, as AV1013, the analogue that lacks PDE inhibitor activity, is ineffective. scRNA-seq analysis reveals upregulation of multiple signaling pathways, including mTOR, in damaged Müller glia (MG) with ibudilast treatment compared to AV1013. Components of mTORC1 and mTORC2 are upregulated in both bipolar cells and MG with ibudilast. The mTOR inhibitor rapamycin blocked accumulation of pS6 but did not reduce TUNEL positive dying cells. Additionally, through ligand-receptor interaction analysis, crosstalk between bipolar cells and MG may be important for neuroprotection. We have identified several paracrine signaling pathways that are known to contribute to cell survival and neuroprotection and might play essential roles in ibudilast function. These findings highlight ibudilast's potential to protect inner retinal neurons during damage and show promise for future clinical translation.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemogenetic Control of Striatal Astrocytes Improves Parkinsonian Motor Deficits in Mice.
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-04 DOI: 10.1002/glia.24679
Wesley R Evans, Sindhuja S Baskar, Angelica Vellore, Ana Raquel Castro E Costa, Cynthia Jacob, Sanya Ravoori, Abimbola Arigbe, Rafiq Huda

Parkinson's disease (PD) is characterized by the degeneration of dopaminergic nigrostriatal inputs, which causes striatal network dysfunction and leads to pronounced motor deficits. Recent evidence highlights astrocytes as a potential local source for striatal neuromodulation. There is substantial evidence for norepinephrine-mediated recruitment of cortical astrocyte activity during movement and locomotion. However, it is unclear how astrocytes in the striatum, a region devoid of norepinephrine neuromodulatory inputs, respond during locomotion. Moreover, it remains unknown how dopamine loss affects striatal astrocyte activity and whether astrocyte activity regulates behavioral deficits in PD. We addressed these questions by performing astrocyte-specific calcium recordings and manipulations using in vivo fiber photometry and chemogenetics. We find that locomotion elicits astrocyte calcium activity over a slower timescale than neurons. Acute pharmacological blockade of dopamine receptors only moderately reduced locomotion-related astrocyte activity. Yet, unilateral dopamine depletion significantly attenuated astrocyte calcium responses. Chemogenetic stimulation of Gi-coupled receptors partially improved this functional astrocyte deficit in dopamine-lesioned mice. In parallel, chemogenetic manipulation restored asymmetrical motor deficits and moderately improved open-field exploratory behavior. Together, our results establish a novel role for functional striatal astrocyte signaling in modulating motor function in PD and highlight non-neuronal targets for potential PD therapeutics.

{"title":"Chemogenetic Control of Striatal Astrocytes Improves Parkinsonian Motor Deficits in Mice.","authors":"Wesley R Evans, Sindhuja S Baskar, Angelica Vellore, Ana Raquel Castro E Costa, Cynthia Jacob, Sanya Ravoori, Abimbola Arigbe, Rafiq Huda","doi":"10.1002/glia.24679","DOIUrl":"https://doi.org/10.1002/glia.24679","url":null,"abstract":"<p><p>Parkinson's disease (PD) is characterized by the degeneration of dopaminergic nigrostriatal inputs, which causes striatal network dysfunction and leads to pronounced motor deficits. Recent evidence highlights astrocytes as a potential local source for striatal neuromodulation. There is substantial evidence for norepinephrine-mediated recruitment of cortical astrocyte activity during movement and locomotion. However, it is unclear how astrocytes in the striatum, a region devoid of norepinephrine neuromodulatory inputs, respond during locomotion. Moreover, it remains unknown how dopamine loss affects striatal astrocyte activity and whether astrocyte activity regulates behavioral deficits in PD. We addressed these questions by performing astrocyte-specific calcium recordings and manipulations using in vivo fiber photometry and chemogenetics. We find that locomotion elicits astrocyte calcium activity over a slower timescale than neurons. Acute pharmacological blockade of dopamine receptors only moderately reduced locomotion-related astrocyte activity. Yet, unilateral dopamine depletion significantly attenuated astrocyte calcium responses. Chemogenetic stimulation of G<sub>i</sub>-coupled receptors partially improved this functional astrocyte deficit in dopamine-lesioned mice. In parallel, chemogenetic manipulation restored asymmetrical motor deficits and moderately improved open-field exploratory behavior. Together, our results establish a novel role for functional striatal astrocyte signaling in modulating motor function in PD and highlight non-neuronal targets for potential PD therapeutics.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143187804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Concept of Neuroglia - the State of the Art Circa 1900.
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-04 DOI: 10.1002/glia.24678
Helmut Kettenmann, Bilge Ugursu, Bruce R Ransom, Christian Steinhäuser

Glial cells were first defined by Rudolf Virchow in 1856. About 40 years later, glial research had developed into a field distinct from the mainstream study of neurons as the central elements governing brain function. By that time, substantial knowledge about the properties of glial cells had accumulated, exemplified by five important publications by four distinguished investigators: Gustav Retzius, Michael von Lenhossek, Carl Weigert, and Hans Held. These treatises broadly summarized what was known about glial cells, comparing findings from leeches to humans. Practically speaking, these articles represent the foundation of our current knowledge. All five contributions were published in German, which at the time was one of the dominant languages for scientific exchange. This article summarizes and comments on their findings and thus provides insight into what was known about glial cells at that time. More importantly, in the Supporting Information, we provide English translations and original scans of these five publications, making them accessible to an international readership.

{"title":"The Concept of Neuroglia - the State of the Art Circa 1900.","authors":"Helmut Kettenmann, Bilge Ugursu, Bruce R Ransom, Christian Steinhäuser","doi":"10.1002/glia.24678","DOIUrl":"https://doi.org/10.1002/glia.24678","url":null,"abstract":"<p><p>Glial cells were first defined by Rudolf Virchow in 1856. About 40 years later, glial research had developed into a field distinct from the mainstream study of neurons as the central elements governing brain function. By that time, substantial knowledge about the properties of glial cells had accumulated, exemplified by five important publications by four distinguished investigators: Gustav Retzius, Michael von Lenhossek, Carl Weigert, and Hans Held. These treatises broadly summarized what was known about glial cells, comparing findings from leeches to humans. Practically speaking, these articles represent the foundation of our current knowledge. All five contributions were published in German, which at the time was one of the dominant languages for scientific exchange. This article summarizes and comments on their findings and thus provides insight into what was known about glial cells at that time. More importantly, in the Supporting Information, we provide English translations and original scans of these five publications, making them accessible to an international readership.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143187805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contributions of Genetic Variation in Astrocytes to Cell and Molecular Mechanisms of Risk and Resilience to Late-Onset Alzheimer's Disease.
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-02-03 DOI: 10.1002/glia.24677
Hyo Lee, Richard V Pearse, Alexandra M Lish, Cheryl Pan, Zachary M Augur, Gizem Terzioglu, Pallavi Gaur, Meichen Liao, Masashi Fujita, Earvin S Tio, Duc M Duong, Daniel Felsky, Nicholas T Seyfried, Vilas Menon, David A Bennett, Philip L De Jager, Tracy L Young-Pearse

Reactive astrocytes are associated with Alzheimer's disease (AD), and several AD genetic risk variants are associated with genes highly expressed in astrocytes. However, the contribution of genetic risk within astrocytes to cellular processes relevant to the pathogenesis of AD remains ill-defined. Here, we present a resource for studying AD genetic risk in astrocytes using a large collection of induced pluripotent stem cell (iPSC) lines from deeply phenotyped individuals with a range of neuropathological and cognitive outcomes. IPSC lines from 44 individuals were differentiated into astrocytes followed by unbiased molecular profiling using RNA sequencing and tandem mass tag-mass spectrometry. We demonstrate the utility of this resource in examining gene- and pathway-level associations with clinical and neuropathological traits, as well as in analyzing genetic risk and resilience factors through parallel analyses of iPSC-astrocytes and brain tissue from the same individuals. Our analyses reveal that genes and pathways altered in iPSC-derived astrocytes from individuals with AD are concordantly dysregulated in AD brain tissue. This includes increased levels of prefoldin proteins, extracellular matrix factors, COPI-mediated trafficking components and reduced levels of proteins involved in cellular respiration and fatty acid oxidation. Additionally, iPSC-derived astrocytes from individuals resilient to high AD neuropathology show elevated basal levels of interferon response proteins and increased secretion of interferon gamma. Correspondingly, higher polygenic risk scores for AD are associated with lower levels of interferon response proteins in astrocytes. This study establishes an experimental system that integrates genetic information with a matched iPSC lines and brain tissue data from a large cohort of individuals to identify genetic contributions to molecular pathways affecting AD risk and resilience.

{"title":"Contributions of Genetic Variation in Astrocytes to Cell and Molecular Mechanisms of Risk and Resilience to Late-Onset Alzheimer's Disease.","authors":"Hyo Lee, Richard V Pearse, Alexandra M Lish, Cheryl Pan, Zachary M Augur, Gizem Terzioglu, Pallavi Gaur, Meichen Liao, Masashi Fujita, Earvin S Tio, Duc M Duong, Daniel Felsky, Nicholas T Seyfried, Vilas Menon, David A Bennett, Philip L De Jager, Tracy L Young-Pearse","doi":"10.1002/glia.24677","DOIUrl":"10.1002/glia.24677","url":null,"abstract":"<p><p>Reactive astrocytes are associated with Alzheimer's disease (AD), and several AD genetic risk variants are associated with genes highly expressed in astrocytes. However, the contribution of genetic risk within astrocytes to cellular processes relevant to the pathogenesis of AD remains ill-defined. Here, we present a resource for studying AD genetic risk in astrocytes using a large collection of induced pluripotent stem cell (iPSC) lines from deeply phenotyped individuals with a range of neuropathological and cognitive outcomes. IPSC lines from 44 individuals were differentiated into astrocytes followed by unbiased molecular profiling using RNA sequencing and tandem mass tag-mass spectrometry. We demonstrate the utility of this resource in examining gene- and pathway-level associations with clinical and neuropathological traits, as well as in analyzing genetic risk and resilience factors through parallel analyses of iPSC-astrocytes and brain tissue from the same individuals. Our analyses reveal that genes and pathways altered in iPSC-derived astrocytes from individuals with AD are concordantly dysregulated in AD brain tissue. This includes increased levels of prefoldin proteins, extracellular matrix factors, COPI-mediated trafficking components and reduced levels of proteins involved in cellular respiration and fatty acid oxidation. Additionally, iPSC-derived astrocytes from individuals resilient to high AD neuropathology show elevated basal levels of interferon response proteins and increased secretion of interferon gamma. Correspondingly, higher polygenic risk scores for AD are associated with lower levels of interferon response proteins in astrocytes. This study establishes an experimental system that integrates genetic information with a matched iPSC lines and brain tissue data from a large cohort of individuals to identify genetic contributions to molecular pathways affecting AD risk and resilience.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 73, Issue 3
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-01-31 DOI: 10.1002/glia.24548

{"title":"Cover Image, Volume 73, Issue 3","authors":"","doi":"10.1002/glia.24548","DOIUrl":"https://doi.org/10.1002/glia.24548","url":null,"abstract":"<p>\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"73 3","pages":"C1"},"PeriodicalIF":5.4,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.24548","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glia Modulates Immune Responses in the Retina Through Distinct MHC Pathways.
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2025-01-28 DOI: 10.1002/glia.24656
Simona Intonti, Despina Kokona, Martin S Zinkernagel, Volker Enzmann, Jens V Stein, Federica M Conedera

Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia. Glial cells act as sentinels, detecting antigens released during degeneration and interacting with T-cells via MHC molecules, which are essential for immune responses. Microglia function as APCs via the MHC Class II pathway, upregulating key molecules such as Csf1r and cytokines. In contrast, Müller cells act through the MHC Class I pathway, exhibiting upregulated antigen processing genes and promoting a CD8+ T-cell response. Distinct cytokine signaling pathways, including TNF-α and IFN Type I, contribute to the immune balance. Human retinal specimens corroborate these findings, demonstrating glial activation and MHC expression correlating with degenerative changes. In vitro assays also confirmed differential T-cell migration responses to activated microglia and Müller cells, highlighting their role in shaping the immune milieu within the retina. In summary, our study emphasizes the involvement of retinal glial cells in modulating the immune response after insults to the retinal parenchyma. Unraveling the intricacies of glia-mediated antigen presentation in RD is essential for developing precise therapeutic interventions for retinal pathologies.

神经胶质抗原递呈细胞(APC)是视网膜内免疫监视的关键调节器,可维持组织平衡并对损伤做出迅速反应。然而,它们在局部协调和激活的复杂机制仍不清楚。我们的研究综合了视网膜损伤的动物模型、人类视网膜的回顾性分析和体外实验,以深入了解视网膜变性(RD)过程中抗原递呈在神经免疫学中的关键作用,揭示了各种胶质细胞,特别是 Müller 胶质细胞和小胶质细胞的参与。神经胶质细胞充当哨兵,检测变性过程中释放的抗原,并通过 MHC 分子与 T 细胞相互作用,这对免疫反应至关重要。小胶质细胞通过 MHC II 类途径充当 APC,上调 Csf1r 和细胞因子等关键分子。相反,Müller 细胞则通过 MHC I 类途径发挥作用,表现出抗原处理基因上调并促进 CD8+ T 细胞反应。不同的细胞因子信号通路,包括 TNF-α 和 IFN I 型,有助于免疫平衡。人类视网膜标本证实了这些发现,显示神经胶质的活化和 MHC 的表达与退行性变化相关。体外试验也证实了T细胞对活化的小胶质细胞和Müller细胞的不同迁移反应,突出了它们在塑造视网膜内免疫环境中的作用。总之,我们的研究强调了视网膜胶质细胞在视网膜实质受到损伤后参与调节免疫反应。揭示 RD 中神经胶质细胞介导的抗原递呈的复杂性对于开发针对视网膜病变的精确治疗干预措施至关重要。
{"title":"Glia Modulates Immune Responses in the Retina Through Distinct MHC Pathways.","authors":"Simona Intonti, Despina Kokona, Martin S Zinkernagel, Volker Enzmann, Jens V Stein, Federica M Conedera","doi":"10.1002/glia.24656","DOIUrl":"https://doi.org/10.1002/glia.24656","url":null,"abstract":"<p><p>Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia. Glial cells act as sentinels, detecting antigens released during degeneration and interacting with T-cells via MHC molecules, which are essential for immune responses. Microglia function as APCs via the MHC Class II pathway, upregulating key molecules such as Csf1r and cytokines. In contrast, Müller cells act through the MHC Class I pathway, exhibiting upregulated antigen processing genes and promoting a CD8<sup>+</sup> T-cell response. Distinct cytokine signaling pathways, including TNF-α and IFN Type I, contribute to the immune balance. Human retinal specimens corroborate these findings, demonstrating glial activation and MHC expression correlating with degenerative changes. In vitro assays also confirmed differential T-cell migration responses to activated microglia and Müller cells, highlighting their role in shaping the immune milieu within the retina. In summary, our study emphasizes the involvement of retinal glial cells in modulating the immune response after insults to the retinal parenchyma. Unraveling the intricacies of glia-mediated antigen presentation in RD is essential for developing precise therapeutic interventions for retinal pathologies.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Glia
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1