首页 > 最新文献

Glia最新文献

英文 中文
R-Ras1 and R-Ras2 regulate mature oligodendrocyte subpopulations. R-Ras1和R-Ras2调控成熟的少突胶质细胞亚群。
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-11-19 DOI: 10.1002/glia.24643
Berta Alcover-Sanchez, Gonzalo Garcia-Martin, Víctor Paleo-García, Ana Quintas, Ana Dopazo, Agnès Gruart, José María Delgado-García, Pedro de la Villa, Francisco Wandosell, Marta P Pereira, Beatriz Cubelos

In the mammalian central nervous system, axonal myelination, executed by mature oligodendrocytes (MOLs), enables rapid neural transmission. Conversely, myelin deficiencies are hallmark features of multiple sclerosis, optic neuromyelitis, and some leukodystrophies. Recent studies have highlighted that MOLs are heterogeneous; however, how MOL subpopulations are specified and balanced in physiological settings is poorly understood. Previous works have demonstrated an essential role of the small GTPases R-Ras1 and R-Ras2 in the survival and myelination of oligodendrocytes. In this study, we aimed to determine how R-Ras1 and R-Ras2 contribute to the heterogeneity of MOL subpopulations. Our results evidence that R-Ras1 and R-Ras2 affect specification into the distinct subpopulations MOL1, MOL2, and MOL5/6, which in turn vary in their dependence of these GTPases. In R-Ras1 and/or R-Ras2 mutant mice, we observed an increase in the MOL1 subpopulation and a decrease in the MOL2 and MOL5/6 subpopulations. We identified R-Ras1 and R-Ras2 as key elements in balancing the heterogeneity of MOLs. Our results contribute to the understanding of the molecular mechanisms underlying the heterogeneity of MOLs and the myelination processes, which is crucial for innovating regenerative therapies for nervous system disorders.

在哺乳动物的中枢神经系统中,成熟少突胶质细胞(MOLs)的轴突髓鞘化使神经传输迅速。相反,髓鞘缺乏是多发性硬化症、视神经脊髓炎和某些白质营养不良症的标志性特征。最近的研究突出表明,髓鞘具有异质性;然而,人们对髓鞘亚群在生理环境中如何特定和平衡还知之甚少。之前的研究表明,小 GTP 酶 R-Ras1 和 R-Ras2 在少突胶质细胞的存活和髓鞘化过程中发挥着重要作用。在本研究中,我们旨在确定 R-Ras1 和 R-Ras2 如何导致 MOL 亚群的异质性。我们的研究结果证明,R-Ras1和R-Ras2影响了MOL1、MOL2和MOL5/6等不同亚群的分化,而这些亚群对这些GTP酶的依赖性又各不相同。在 R-Ras1 和/或 R-Ras2 突变小鼠中,我们观察到 MOL1 亚群增加,而 MOL2 和 MOL5/6 亚群减少。我们发现 R-Ras1 和 R-Ras2 是平衡 MOL 异质性的关键因素。我们的研究结果有助于人们了解MOLs异质性和髓鞘化过程的分子机制,这对于创新神经系统疾病的再生疗法至关重要。
{"title":"R-Ras1 and R-Ras2 regulate mature oligodendrocyte subpopulations.","authors":"Berta Alcover-Sanchez, Gonzalo Garcia-Martin, Víctor Paleo-García, Ana Quintas, Ana Dopazo, Agnès Gruart, José María Delgado-García, Pedro de la Villa, Francisco Wandosell, Marta P Pereira, Beatriz Cubelos","doi":"10.1002/glia.24643","DOIUrl":"10.1002/glia.24643","url":null,"abstract":"<p><p>In the mammalian central nervous system, axonal myelination, executed by mature oligodendrocytes (MOLs), enables rapid neural transmission. Conversely, myelin deficiencies are hallmark features of multiple sclerosis, optic neuromyelitis, and some leukodystrophies. Recent studies have highlighted that MOLs are heterogeneous; however, how MOL subpopulations are specified and balanced in physiological settings is poorly understood. Previous works have demonstrated an essential role of the small GTPases R-Ras1 and R-Ras2 in the survival and myelination of oligodendrocytes. In this study, we aimed to determine how R-Ras1 and R-Ras2 contribute to the heterogeneity of MOL subpopulations. Our results evidence that R-Ras1 and R-Ras2 affect specification into the distinct subpopulations MOL1, MOL2, and MOL5/6, which in turn vary in their dependence of these GTPases. In R-Ras1 and/or R-Ras2 mutant mice, we observed an increase in the MOL1 subpopulation and a decrease in the MOL2 and MOL5/6 subpopulations. We identified R-Ras1 and R-Ras2 as key elements in balancing the heterogeneity of MOLs. Our results contribute to the understanding of the molecular mechanisms underlying the heterogeneity of MOLs and the myelination processes, which is crucial for innovating regenerative therapies for nervous system disorders.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All the single cells: Single-cell transcriptomics/epigenomics experimental design and analysis considerations for glial biologists. 所有单细胞神经胶质生物学家的单细胞转录组学/表观组学实验设计和分析注意事项。
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-11-19 DOI: 10.1002/glia.24633
Katherine E Prater, Kevin Z Lin

Single-cell transcriptomics, epigenomics, and other 'omics applied at single-cell resolution can significantly advance hypotheses and understanding of glial biology. Omics technologies are revealing a large and growing number of new glial cell subtypes, defined by their gene expression profile. These subtypes have significant implications for understanding glial cell function, cell-cell communications, and glia-specific changes between homeostasis and conditions such as neurological disease. For many, the training in how to analyze, interpret, and understand these large datasets has been through reading and understanding literature from other fields like biostatistics. Here, we provide a primer for glial biologists on experimental design and analysis of single-cell RNA-seq datasets. Our goal is to further the understanding of why decisions are made about datasets and to enhance biologists' ability to interpret and critique their work and the work of others. We review the steps involved in single-cell analysis with a focus on decision points and particular notes for glia. The goal of this primer is to ensure that single-cell 'omics experiments continue to advance glial biology in a rigorous and replicable way.

以单细胞分辨率应用单细胞转录组学、表观基因组学和其他'omics'技术,可以极大地推动对神经胶质生物学的假设和理解。全能组学技术揭示了大量且日益增多的新神经胶质细胞亚型,这些亚型由其基因表达谱定义。这些亚型对了解神经胶质细胞功能、细胞间通讯以及神经胶质细胞在平衡状态和神经疾病等情况之间的特异性变化具有重要意义。对于许多人来说,如何分析、解释和理解这些大型数据集的培训都是通过阅读和理解生物统计学等其他领域的文献来进行的。在此,我们将为神经胶质生物学家提供有关单细胞 RNA-seq 数据集的实验设计和分析的入门指南。我们的目标是进一步了解数据集决策的原因,提高生物学家解释和评论自己和他人工作的能力。我们回顾了单细胞分析所涉及的步骤,重点是决策点和神经胶质细胞的特别注意事项。本入门指南的目的是确保单细胞'omics'实验继续以严谨和可复制的方式推进神经胶质生物学的发展。
{"title":"All the single cells: Single-cell transcriptomics/epigenomics experimental design and analysis considerations for glial biologists.","authors":"Katherine E Prater, Kevin Z Lin","doi":"10.1002/glia.24633","DOIUrl":"10.1002/glia.24633","url":null,"abstract":"<p><p>Single-cell transcriptomics, epigenomics, and other 'omics applied at single-cell resolution can significantly advance hypotheses and understanding of glial biology. Omics technologies are revealing a large and growing number of new glial cell subtypes, defined by their gene expression profile. These subtypes have significant implications for understanding glial cell function, cell-cell communications, and glia-specific changes between homeostasis and conditions such as neurological disease. For many, the training in how to analyze, interpret, and understand these large datasets has been through reading and understanding literature from other fields like biostatistics. Here, we provide a primer for glial biologists on experimental design and analysis of single-cell RNA-seq datasets. Our goal is to further the understanding of why decisions are made about datasets and to enhance biologists' ability to interpret and critique their work and the work of others. We review the steps involved in single-cell analysis with a focus on decision points and particular notes for glia. The goal of this primer is to ensure that single-cell 'omics experiments continue to advance glial biology in a rigorous and replicable way.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocytic NHERF-1 Increases Seizure Susceptibility by Inhibiting Surface Expression of TREK-1. 星形胶质细胞 NHERF-1 通过抑制 TREK-1 的表面表达增加癫痫易感性
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-11-14 DOI: 10.1002/glia.24644
Yeonju Bae, Soomin Lee, Ajung Kim, Shinae Lee, Seong-Seop Kim, Sunyoung Park, Junyeol Noh, Kanghyun Ryoo, Gwan-Su Yi, Jae-Yong Park, Eun Mi Hwang

Mature hippocampal astrocytes exhibit a linear current-to-voltage (I-V) K+ membrane conductance called passive conductance. It is estimated to enable astrocytes to keep potassium homeostasis in the brain. We previously reported that the TWIK-1/TREK-1 heterodimeric channels are crucial for astrocytic passive conductance. However, the regulatory mechanism of these channels by other binding proteins remains elusive. Here, we identified Na+/H+ exchange regulator-1 (NHERF-1), a protein highly expressed in astrocytes, as a novel interaction partner for these channels. NHERF-1 endogenously bound to TWIK-1/TREK-1 in hippocampal cultured astrocytes. When NHERF-1 is overexpressed or silenced, surface expression and activity of TWIK-1/TREK-1 heterodimeric channels are inhibited or enhanced, respectively. Furthermore, we confirmed that reduced astrocytic passive conductance by NHERF-1 overexpressing in the hippocampus increases kainic acid (KA)-induced seizure sensitivity. Taken together, these results suggest that NHERF-1 is a key regulator of TWIK-1/TREK-1 heterodimeric channels in astrocytes and suppression of TREK-1 surface expression by NHERF-1 increases KA-induced seizure susceptibility via reduction of astrocytic passive conductance.

成熟的海马星形胶质细胞表现出一种线性电流-电压(I-V)K+膜电导,称为被动电导。据估计,它能使星形胶质细胞在大脑中保持钾平衡。我们曾报道 TWIK-1/TREK-1 异源二聚体通道对星形胶质细胞的被动传导至关重要。然而,其他结合蛋白对这些通道的调控机制仍不明确。在这里,我们发现了一种在星形胶质细胞中高表达的蛋白--Na+/H+交换调节因子-1(NHERF-1)--是这些通道的新型相互作用伙伴。在海马培养的星形胶质细胞中,NHERF-1与TWIK-1/TREK-1内源结合。当 NHERF-1 过量表达或沉默时,TWIK-1/TREK-1 异源二聚体通道的表面表达和活性分别受到抑制或增强。此外,我们还证实,在海马中过表达 NHERF-1 会降低星形胶质细胞的被动传导性,从而增加凯尼酸(KA)诱导的癫痫发作敏感性。综上所述,这些结果表明,NHERF-1是星形胶质细胞中TWIK-1/TREK-1异源二聚体通道的关键调控因子,NHERF-1抑制TREK-1表面表达会通过降低星形胶质细胞的被动传导增加KA诱导癫痫发作的敏感性。
{"title":"Astrocytic NHERF-1 Increases Seizure Susceptibility by Inhibiting Surface Expression of TREK-1.","authors":"Yeonju Bae, Soomin Lee, Ajung Kim, Shinae Lee, Seong-Seop Kim, Sunyoung Park, Junyeol Noh, Kanghyun Ryoo, Gwan-Su Yi, Jae-Yong Park, Eun Mi Hwang","doi":"10.1002/glia.24644","DOIUrl":"10.1002/glia.24644","url":null,"abstract":"<p><p>Mature hippocampal astrocytes exhibit a linear current-to-voltage (I-V) K<sup>+</sup> membrane conductance called passive conductance. It is estimated to enable astrocytes to keep potassium homeostasis in the brain. We previously reported that the TWIK-1/TREK-1 heterodimeric channels are crucial for astrocytic passive conductance. However, the regulatory mechanism of these channels by other binding proteins remains elusive. Here, we identified Na+/H+ exchange regulator-1 (NHERF-1), a protein highly expressed in astrocytes, as a novel interaction partner for these channels. NHERF-1 endogenously bound to TWIK-1/TREK-1 in hippocampal cultured astrocytes. When NHERF-1 is overexpressed or silenced, surface expression and activity of TWIK-1/TREK-1 heterodimeric channels are inhibited or enhanced, respectively. Furthermore, we confirmed that reduced astrocytic passive conductance by NHERF-1 overexpressing in the hippocampus increases kainic acid (KA)-induced seizure sensitivity. Taken together, these results suggest that NHERF-1 is a key regulator of TWIK-1/TREK-1 heterodimeric channels in astrocytes and suppression of TREK-1 surface expression by NHERF-1 increases KA-induced seizure susceptibility via reduction of astrocytic passive conductance.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aquaporin-4 activation facilitates glymphatic system function and hematoma clearance post-intracerebral hemorrhage. 激活Aquaporin-4有助于脑出血后的肾上腺系统功能和血肿清除。
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-11-12 DOI: 10.1002/glia.24639
Wenchao Chen, Chuntian Liang, Shasha Peng, Shuangjin Bao, Fang Xue, Xia Lian, Yinghong Liu, Gaiqing Wang

Efficient clearance of hematomas is crucial for improving clinical outcomes in patients with intracerebral hemorrhage (ICH). The glymphatic system, facilitated by aquaporin-4 (AQP4), plays a crucial role in cerebrospinal fluid (CSF) entry and metabolic waste clearance. This study examined the role of the glymphatic system in ICH pathology, with a focus on AQP4. Collagenase-induced ICH models were established, with AQP4 expression regulated through mifepristone as an agonist, TGN-020 as an inhibitor, and Aqp4 gene knockout. Fluorescence tracing and multimodal magnetic resonance imaging (MRI) were employed to observe glymphatic system functionality, hematoma, and edema volumes. Neurological deficit scoring was performed using the modified Garcia Scale. AQP4 expression was quantified using RT-qPCR and Western blotting, and cellular localization was explored using immunofluorescence. The brain tissue sections were examined for neuronal morphology, degenerative changes, and iron deposition. Three days post-ICH, the AQP4 agonist group showed increased AQP4 protein expression and perivascular polarization, decreased hemoglobin levels, and reduced iron deposition. Conversely, the inhibition group exhibited contrasting trends. AQP4 activation improved glymphatic system function, leading to a wider distribution, improved neurological function, and reduced hematoma. Pharmacological inhibition and genetic knockout of AQP4 have opposing effects. The glymphatic system, facilitated by AQP4, plays a crucial role in hematoma clearance following cerebral hemorrhage. Upregulation of AQP4 improves glymphatic system function, facilitates hematoma clearance, and promotes brain tissue recovery.

有效清除血肿对改善脑内出血(ICH)患者的临床疗效至关重要。由水汽蛋白-4(AQP4)促进的甘油系统在脑脊液(CSF)进入和代谢废物清除中发挥着至关重要的作用。本研究以 AQP4 为重点,探讨了甘液系统在 ICH 病理学中的作用。研究人员建立了胶原酶诱导的 ICH 模型,通过米非司酮作为激动剂、TGN-020 作为抑制剂以及 Aqp4 基因敲除来调节 AQP4 的表达。采用荧光追踪和多模态磁共振成像(MRI)观察甘回流系统功能、血肿和水肿体积。采用改良加西亚量表对神经功能缺损进行评分。使用 RT-qPCR 和 Western 印迹法量化 AQP4 的表达,并使用免疫荧光法检测细胞定位。对脑组织切片进行神经元形态、退行性变化和铁沉积检查。脑梗死三天后,AQP4 激动剂组显示 AQP4 蛋白表达和血管周围极化增加,血红蛋白水平降低,铁沉积减少。相反,抑制组则呈现出截然不同的趋势。激活 AQP4 可改善甘液系统功能,使其分布更广,改善神经功能,减少血肿。药物抑制和基因敲除 AQP4 的效果截然相反。在 AQP4 的促进下,甘液系统在脑出血后的血肿清除中发挥着至关重要的作用。上调 AQP4 可改善甘液系统功能,促进血肿清除,促进脑组织恢复。
{"title":"Aquaporin-4 activation facilitates glymphatic system function and hematoma clearance post-intracerebral hemorrhage.","authors":"Wenchao Chen, Chuntian Liang, Shasha Peng, Shuangjin Bao, Fang Xue, Xia Lian, Yinghong Liu, Gaiqing Wang","doi":"10.1002/glia.24639","DOIUrl":"https://doi.org/10.1002/glia.24639","url":null,"abstract":"<p><p>Efficient clearance of hematomas is crucial for improving clinical outcomes in patients with intracerebral hemorrhage (ICH). The glymphatic system, facilitated by aquaporin-4 (AQP4), plays a crucial role in cerebrospinal fluid (CSF) entry and metabolic waste clearance. This study examined the role of the glymphatic system in ICH pathology, with a focus on AQP4. Collagenase-induced ICH models were established, with AQP4 expression regulated through mifepristone as an agonist, TGN-020 as an inhibitor, and Aqp4 gene knockout. Fluorescence tracing and multimodal magnetic resonance imaging (MRI) were employed to observe glymphatic system functionality, hematoma, and edema volumes. Neurological deficit scoring was performed using the modified Garcia Scale. AQP4 expression was quantified using RT-qPCR and Western blotting, and cellular localization was explored using immunofluorescence. The brain tissue sections were examined for neuronal morphology, degenerative changes, and iron deposition. Three days post-ICH, the AQP4 agonist group showed increased AQP4 protein expression and perivascular polarization, decreased hemoglobin levels, and reduced iron deposition. Conversely, the inhibition group exhibited contrasting trends. AQP4 activation improved glymphatic system function, leading to a wider distribution, improved neurological function, and reduced hematoma. Pharmacological inhibition and genetic knockout of AQP4 have opposing effects. The glymphatic system, facilitated by AQP4, plays a crucial role in hematoma clearance following cerebral hemorrhage. Upregulation of AQP4 improves glymphatic system function, facilitates hematoma clearance, and promotes brain tissue recovery.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The E3 ubiquitin ligase Nedd4 fosters developmental myelination in the mouse central and peripheral nervous system. E3泛素连接酶Nedd4促进了小鼠中枢神经系统和周围神经系统的髓鞘发育。
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-11-07 DOI: 10.1002/glia.24642
Cristina Fimiani, Jorge A Pereira, Joanne Gerber, Ingrid Berg, Jonathan DeGeer, Sven Bachofner, Jonas S Fischer, Manuel Kauffmann, Ueli Suter

Ubiquitination is a major post-translational regulatory mechanism that tunes numerous aspects of ubiquitinated target proteins, including localization, stability, and function. During differentiation and myelination, Oligodendrocytes (OLs) in the central nervous system and Schwann cells (SCs) in the peripheral nervous system undergo major cellular changes, including the tightly controlled production of large and accurate amounts of proteins and lipids. Such processes have been implied to depend on regulatory aspects of ubiquitination, with E3 ubiquitin ligases being generally involved in the selection of specific ubiquitination substrates by ligating ubiquitin to targets and granting target selectivity. In this study, we have used multiple transgenic mouse lines to investigate the functional impact of the E3 ubiquitin ligase Nedd4 in the OL- and SC-lineages. Our findings in the developing spinal cord indicate that Nedd4 is required for the correct accumulation of differentiated OLs and ensures proper myelination, supporting and further expanding previously suggested conceptual models. In sciatic nerves, we found that Nedd4 is required for timely radial sorting of axons by SCs as a pre-requirement for correct onset of myelination. Moreover, Nedd4 ensures correct myelin thickness in both SCs and spinal cord OLs.

泛素化是一种主要的翻译后调控机制,它能调整泛素化目标蛋白的许多方面,包括定位、稳定性和功能。在分化和髓鞘化过程中,中枢神经系统中的少突胶质细胞(OLs)和外周神经系统中的许旺细胞(SCs)会发生重大的细胞变化,包括严格控制大量和精确的蛋白质和脂质的产生。人们认为这些过程依赖于泛素化的调控,E3 泛素连接酶通常通过将泛素连接到靶点并赋予靶点选择性来参与特定泛素化底物的选择。在这项研究中,我们利用多种转基因小鼠品系研究了E3泛素连接酶Nedd4在OL-和SC-系中的功能影响。我们在发育中脊髓中的研究结果表明,Nedd4是分化的OL正确积累和确保正常髓鞘化所必需的,这支持并进一步扩展了之前提出的概念模型。在坐骨神经中,我们发现Nedd4是SC及时对轴突进行径向分类的必要条件,这是正确开始髓鞘化的前提条件。此外,Nedd4还能确保SC和脊髓OL中正确的髓鞘厚度。
{"title":"The E3 ubiquitin ligase Nedd4 fosters developmental myelination in the mouse central and peripheral nervous system.","authors":"Cristina Fimiani, Jorge A Pereira, Joanne Gerber, Ingrid Berg, Jonathan DeGeer, Sven Bachofner, Jonas S Fischer, Manuel Kauffmann, Ueli Suter","doi":"10.1002/glia.24642","DOIUrl":"https://doi.org/10.1002/glia.24642","url":null,"abstract":"<p><p>Ubiquitination is a major post-translational regulatory mechanism that tunes numerous aspects of ubiquitinated target proteins, including localization, stability, and function. During differentiation and myelination, Oligodendrocytes (OLs) in the central nervous system and Schwann cells (SCs) in the peripheral nervous system undergo major cellular changes, including the tightly controlled production of large and accurate amounts of proteins and lipids. Such processes have been implied to depend on regulatory aspects of ubiquitination, with E3 ubiquitin ligases being generally involved in the selection of specific ubiquitination substrates by ligating ubiquitin to targets and granting target selectivity. In this study, we have used multiple transgenic mouse lines to investigate the functional impact of the E3 ubiquitin ligase Nedd4 in the OL- and SC-lineages. Our findings in the developing spinal cord indicate that Nedd4 is required for the correct accumulation of differentiated OLs and ensures proper myelination, supporting and further expanding previously suggested conceptual models. In sciatic nerves, we found that Nedd4 is required for timely radial sorting of axons by SCs as a pre-requirement for correct onset of myelination. Moreover, Nedd4 ensures correct myelin thickness in both SCs and spinal cord OLs.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oligodendrocyte Slc48a1 (Hrg1) encodes a functional heme transporter required for myelin integrity. 少突胶质细胞 Slc48a1(Hrg1)编码髓鞘完整性所需的功能性血红素转运体。
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-11-06 DOI: 10.1002/glia.24641
John H Stockley, Adrien M Vaquie, Zhaoyang Xu, Theresa Bartels, Gregory D Jordan, Staffan Holmqvist, Simon Gunter, Guy Lam, Daniel Yamamoto, Rini H Pek, Ian G Chambers, Andrew S Rock, Myfanwy Hill, Chao Zhao, Scott Dillon, Robin J M Franklin, Rosemary O'Connor, David M Bodine, Iqbal Hamza, David H Rowitch

Oligodendrocytes (OLs) of the central nervous system require iron for proteolipid biosynthesis during the myelination process. Although most heme is found complexed to hemoglobin in red blood cells, surprisingly, we found that Slc48a1, encoding the heme transporter Hrg1, is expressed at higher levels in OLs than any other cell type in rodent and humans. We confirmed in situ that Hrg1 is expressed in OLs but not their precursors (OPCs) and found that Hrg1 proteins in CNS white matter co-localized within myelin sheaths. In older Hrg1 null mutant mice we observed reduced expression of myelin associated glycoprotein (Mag) and ultrastructural myelin defects reminiscent of Mag-null animals, suggesting myelin adhesion deficiency. Further, we confirmed reduced myelin iron levels in Hrg1 null animals in vivo, and show that OLs in vitro can directly import both the fluorescent heme analogue ZnMP and heme itself, which rescued iron deficiency induced inhibition of OL differentiation in a heme-oxidase-dependent manner. Together these findings indicate OL Hrg1 encodes a functional heme transporter required for myelin integrity.

中枢神经系统的少突胶质细胞(OL)在髓鞘化过程中需要铁来进行蛋白脂的生物合成。虽然大多数血红素都与红细胞中的血红蛋白络合,但令人惊讶的是,我们发现编码血红素转运体 Hrg1 的 Slc48a1 在啮齿动物和人类 OL 中的表达水平高于任何其他细胞类型。我们在原位证实了 Hrg1 在 OLs 中的表达,而不是在其前体(OPCs)中的表达,并发现 Hrg1 蛋白在中枢神经系统白质中与髓鞘共定位。在年龄较大的 Hrg1 基因缺失突变小鼠中,我们观察到髓鞘相关糖蛋白(Mag)表达减少,髓鞘超微结构缺陷与 Mag 基因缺失动物相似,这表明髓鞘粘附能力不足。此外,我们还证实了 Hrg1 基因缺失动物体内髓鞘铁水平的降低,并表明体外 OL 可直接导入荧光血红素类似物 ZnMP 和血红素本身,从而以血红素氧化酶依赖的方式挽救了缺铁引起的 OL 分化抑制。这些发现共同表明,OL Hrg1编码了髓鞘完整性所需的功能性血红素转运体。
{"title":"Oligodendrocyte Slc48a1 (Hrg1) encodes a functional heme transporter required for myelin integrity.","authors":"John H Stockley, Adrien M Vaquie, Zhaoyang Xu, Theresa Bartels, Gregory D Jordan, Staffan Holmqvist, Simon Gunter, Guy Lam, Daniel Yamamoto, Rini H Pek, Ian G Chambers, Andrew S Rock, Myfanwy Hill, Chao Zhao, Scott Dillon, Robin J M Franklin, Rosemary O'Connor, David M Bodine, Iqbal Hamza, David H Rowitch","doi":"10.1002/glia.24641","DOIUrl":"https://doi.org/10.1002/glia.24641","url":null,"abstract":"<p><p>Oligodendrocytes (OLs) of the central nervous system require iron for proteolipid biosynthesis during the myelination process. Although most heme is found complexed to hemoglobin in red blood cells, surprisingly, we found that Slc48a1, encoding the heme transporter Hrg1, is expressed at higher levels in OLs than any other cell type in rodent and humans. We confirmed in situ that Hrg1 is expressed in OLs but not their precursors (OPCs) and found that Hrg1 proteins in CNS white matter co-localized within myelin sheaths. In older Hrg1 null mutant mice we observed reduced expression of myelin associated glycoprotein (Mag) and ultrastructural myelin defects reminiscent of Mag-null animals, suggesting myelin adhesion deficiency. Further, we confirmed reduced myelin iron levels in Hrg1 null animals in vivo, and show that OLs in vitro can directly import both the fluorescent heme analogue ZnMP and heme itself, which rescued iron deficiency induced inhibition of OL differentiation in a heme-oxidase-dependent manner. Together these findings indicate OL Hrg1 encodes a functional heme transporter required for myelin integrity.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional analysis of antigen presentation by enteric glial cells during intestinal inflammation. 肠道炎症期间肠胶质细胞呈递抗原的功能分析
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-11-04 DOI: 10.1002/glia.24632
Ryan M Brown, Helen H Le, Isaac W Babcock, Tajie H Harris, Alban Gaultier

The Enteric Nervous System is composed of a vastly interconnected network of neurons and glial cells that coordinate to regulate homeostatic gut function including intestinal motility, nutrient sensing, and mucosal barrier immunity. Enteric Glial Cells (EGCs) are a heterogeneous cell population located throughout the gastrointestinal tract and have well described roles in regulating intestinal immune responses. Enteric Glial Cells have been suggested to act as nonconventional antigen presenting cells via the Major Histocompatibility Complex II (MHC II), though this has not been confirmed functionally. Here, we investigate the capability of EGCs to present antigen on MHC I and MHC II using in vitro antigen presentation assays performed with primary murine EGC cultures. We found that EGCs are capable of functional antigen presentation on MHC I, including antigen cross-presentation, but are not capable of functional antigen presentation on MHC II. We also determined EGC cell surface MHC I and MHC II expression levels by flow cytometry during intestinal inflammation during Dextran Sodium Sulfate-induced colitis or acute Toxoplasma gondii infection. We found that EGCs upregulate MHC I during acute T. gondii infection and induce low-level MHC II expression. These findings suggest that EGCs may be important in the regulation of CD8+ T cell responses via MHC I mediated antigen (cross) presentation but may not be relevant for MHC II-mediated antigen presentation.

肠道神经系统由神经元和神经胶质细胞组成的庞大网络相互连接,它们协调调节肠道的平衡功能,包括肠道运动、营养感应和粘膜屏障免疫。肠神经胶质细胞(EGCs)是遍布整个胃肠道的异质性细胞群,在调节肠道免疫反应方面的作用已得到充分描述。有人认为肠胶质细胞可通过主要组织相容性复合体 II(MHC II)充当非常规抗原呈递细胞,但这一观点尚未得到功能上的证实。在这里,我们使用小鼠肠胶质细胞原代培养物进行体外抗原递呈试验,研究肠胶质细胞在 MHC I 和 MHC II 上递呈抗原的能力。我们发现EGC能够在MHC I上进行功能性抗原呈递,包括抗原交叉呈递,但不能在MHC II上进行功能性抗原呈递。我们还通过流式细胞术测定了EGC细胞表面MHC I和MHC II在葡聚糖硫酸钠诱导的结肠炎或急性弓形虫感染等肠道炎症期间的表达水平。我们发现,在弓形虫急性感染期间,EGCs 会上调 MHC I,并诱导低水平的 MHC II 表达。这些发现表明,EGCs 在通过 MHC I 介导的抗原(交叉)呈递调节 CD8+ T 细胞反应方面可能很重要,但可能与 MHC II 介导的抗原呈递无关。
{"title":"Functional analysis of antigen presentation by enteric glial cells during intestinal inflammation.","authors":"Ryan M Brown, Helen H Le, Isaac W Babcock, Tajie H Harris, Alban Gaultier","doi":"10.1002/glia.24632","DOIUrl":"https://doi.org/10.1002/glia.24632","url":null,"abstract":"<p><p>The Enteric Nervous System is composed of a vastly interconnected network of neurons and glial cells that coordinate to regulate homeostatic gut function including intestinal motility, nutrient sensing, and mucosal barrier immunity. Enteric Glial Cells (EGCs) are a heterogeneous cell population located throughout the gastrointestinal tract and have well described roles in regulating intestinal immune responses. Enteric Glial Cells have been suggested to act as nonconventional antigen presenting cells via the Major Histocompatibility Complex II (MHC II), though this has not been confirmed functionally. Here, we investigate the capability of EGCs to present antigen on MHC I and MHC II using in vitro antigen presentation assays performed with primary murine EGC cultures. We found that EGCs are capable of functional antigen presentation on MHC I, including antigen cross-presentation, but are not capable of functional antigen presentation on MHC II. We also determined EGC cell surface MHC I and MHC II expression levels by flow cytometry during intestinal inflammation during Dextran Sodium Sulfate-induced colitis or acute Toxoplasma gondii infection. We found that EGCs upregulate MHC I during acute T. gondii infection and induce low-level MHC II expression. These findings suggest that EGCs may be important in the regulation of CD8<sup>+</sup> T cell responses via MHC I mediated antigen (cross) presentation but may not be relevant for MHC II-mediated antigen presentation.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocytic determinant of the fate of long-term memory. 决定长期记忆命运的星形胶质细胞
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-11-04 DOI: 10.1002/glia.24636
Hiroki Yamao, Ko Matsui

While some vivid memories are unyielding and unforgettable, others fade with time. Astrocytes are recognized for their role in modulating the brain's environment and have recently been considered integral to the brain's information processing and memory formation. This suggests their potential roles in emotional perception and memory formation. In this study, we delve into the impact of amygdala astrocytes on fear behaviors and memory, employing astrocyte-specific optogenetic manipulations in mice. Our findings reveal that astrocytic photoactivation with channelrhodopsin-2 (ChR2) provokes aversive behavioral responses, while archaerhodopsin-T (ArchT) photoactivation diminishes fear perception. ChR2 photoactivation amplifies fear perception and fear memory encoding but obstructs its consolidation. On the other hand, ArchT photoactivation inhibits memory formation during intense aversive stimuli, possibly due to weakened fear perception. However, it prevents the decay of remote fear memory over three weeks. Crucially, these memory effects were observed when optogenetic manipulations coincided with the aversive experience, indicating a deterministic role of astrocytic states at the exact moment of fear experiences in shaping long-term memory. This research underscores the significant and multifaceted role of astrocytes in emotional perception, fear memory formation, and modulation, suggesting a sophisticated astrocyte-neuron communication mechanism underlying basic emotional state transitions of information processing in the brain.

有些生动的记忆坚贞不屈、难以忘怀,而有些记忆则会随着时间的流逝而逐渐消失。星形胶质细胞在调节大脑环境方面的作用已得到公认,最近又被认为是大脑信息处理和记忆形成不可或缺的一部分。这表明星形胶质细胞在情绪感知和记忆形成中具有潜在的作用。在本研究中,我们通过对小鼠进行星形胶质细胞特异性光遗传操作,深入研究了杏仁核星形胶质细胞对恐惧行为和记忆的影响。我们的研究结果表明,星形胶质细胞的channelrhodopsin-2(ChR2)光激活会引发厌恶行为反应,而archaerhodopsin-T(ArchT)光激活则会降低恐惧知觉。ChR2 光激活会增强恐惧感知和恐惧记忆编码,但会阻碍其巩固。另一方面,在强烈的厌恶刺激下,ArchT 光激活会抑制记忆的形成,这可能是由于恐惧感知减弱所致。然而,它却能防止远距离恐惧记忆在三周内衰减。最重要的是,当光遗传学操作与厌恶体验同时发生时,就能观察到这些记忆效应,这表明在恐惧体验的确切时刻,星形胶质细胞状态在塑造长期记忆中起着决定性作用。这项研究强调了星形胶质细胞在情绪感知、恐惧记忆形成和调节中的重要和多方面作用,表明在大脑信息处理的基本情绪状态转换中,存在着一种复杂的星形胶质细胞-神经元交流机制。
{"title":"Astrocytic determinant of the fate of long-term memory.","authors":"Hiroki Yamao, Ko Matsui","doi":"10.1002/glia.24636","DOIUrl":"https://doi.org/10.1002/glia.24636","url":null,"abstract":"<p><p>While some vivid memories are unyielding and unforgettable, others fade with time. Astrocytes are recognized for their role in modulating the brain's environment and have recently been considered integral to the brain's information processing and memory formation. This suggests their potential roles in emotional perception and memory formation. In this study, we delve into the impact of amygdala astrocytes on fear behaviors and memory, employing astrocyte-specific optogenetic manipulations in mice. Our findings reveal that astrocytic photoactivation with channelrhodopsin-2 (ChR2) provokes aversive behavioral responses, while archaerhodopsin-T (ArchT) photoactivation diminishes fear perception. ChR2 photoactivation amplifies fear perception and fear memory encoding but obstructs its consolidation. On the other hand, ArchT photoactivation inhibits memory formation during intense aversive stimuli, possibly due to weakened fear perception. However, it prevents the decay of remote fear memory over three weeks. Crucially, these memory effects were observed when optogenetic manipulations coincided with the aversive experience, indicating a deterministic role of astrocytic states at the exact moment of fear experiences in shaping long-term memory. This research underscores the significant and multifaceted role of astrocytes in emotional perception, fear memory formation, and modulation, suggesting a sophisticated astrocyte-neuron communication mechanism underlying basic emotional state transitions of information processing in the brain.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RhoA regulates oligodendrocyte differentiation and myelination by orchestrating cortical and membrane tension. RhoA 通过协调皮质和膜张力来调节少突胶质细胞的分化和髓鞘化。
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-11-04 DOI: 10.1002/glia.24640
Raquel Vale-Silva, Joana de Paes de Faria, Ana Isabel Seixas, Cord Brakebusch, Robin J M Franklin, João B Relvas

Timely differentiation and myelin formation by oligodendrocytes are essential for the physiological functioning of the central nervous system (CNS). While the Rho GTPase RhoA has been hinted as a negative regulator of myelin sheath formation, the precise in vivo mechanisms have remained elusive. Here we show that RhoA controls the timing and progression of myelination by oligodendrocytes through a fine-tuned balance between cortical tension, membrane tension and cell shape. Using a conditional mouse model, we observe that Rhoa ablation results in the acceleration of myelination driven by hastened differentiation and facilitated through membrane expansion induced by changes in MLCII activity and in F-actin redistribution and turnover within the cell. These findings reveal RhoA as a central molecular integrator of alterations in actin cytoskeleton, actomyosin contractility and membrane tension underlying precise morphogenesis of oligodendrocytes and normal myelination of the CNS.

少突胶质细胞的及时分化和髓鞘形成对中枢神经系统(CNS)的生理功能至关重要。虽然 Rho GTPase RhoA 被认为是髓鞘形成的负调控因子,但其精确的体内机制仍然难以捉摸。在这里,我们展示了 RhoA 通过在皮质张力、膜张力和细胞形状之间的微调平衡来控制少突胶质细胞髓鞘化的时间和进程。通过使用条件性小鼠模型,我们观察到 Rhoa 消减会导致髓鞘化加速,其驱动力是加速分化,并通过 MLCII 活性和细胞内 F-肌动蛋白重新分布和周转的变化所诱导的膜扩张来促进髓鞘化。这些发现揭示了 RhoA 是肌动蛋白细胞骨架、肌动蛋白收缩性和膜张力变化的核心分子整合器,是少突胶质细胞精确形态发生和中枢神经系统正常髓鞘化的基础。
{"title":"RhoA regulates oligodendrocyte differentiation and myelination by orchestrating cortical and membrane tension.","authors":"Raquel Vale-Silva, Joana de Paes de Faria, Ana Isabel Seixas, Cord Brakebusch, Robin J M Franklin, João B Relvas","doi":"10.1002/glia.24640","DOIUrl":"https://doi.org/10.1002/glia.24640","url":null,"abstract":"<p><p>Timely differentiation and myelin formation by oligodendrocytes are essential for the physiological functioning of the central nervous system (CNS). While the Rho GTPase RhoA has been hinted as a negative regulator of myelin sheath formation, the precise in vivo mechanisms have remained elusive. Here we show that RhoA controls the timing and progression of myelination by oligodendrocytes through a fine-tuned balance between cortical tension, membrane tension and cell shape. Using a conditional mouse model, we observe that Rhoa ablation results in the acceleration of myelination driven by hastened differentiation and facilitated through membrane expansion induced by changes in MLCII activity and in F-actin redistribution and turnover within the cell. These findings reveal RhoA as a central molecular integrator of alterations in actin cytoskeleton, actomyosin contractility and membrane tension underlying precise morphogenesis of oligodendrocytes and normal myelination of the CNS.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bottom-up approach identifies the antipsychotic and antineoplastic trifluoperazine and the ribose derivative deoxytubercidin as novel microglial phagocytosis inhibitors. 一种自下而上的方法确定了抗精神病和抗肿瘤药物三氟拉嗪以及核糖衍生物脱氧小檗碱为新型小胶质细胞吞噬抑制剂。
IF 5.4 2区 医学 Q1 NEUROSCIENCES Pub Date : 2024-11-04 DOI: 10.1002/glia.24637
Noelia Rodriguez-Iglesias, Iñaki Paris, Jorge Valero, Lorena Cañas-Zabala, Alejandro Carretero, Klas Hatje, Jitao David Zhang, Christoph Patsch, Markus Britschgi, Simon Gutbier, Amanda Sierra

Phagocytosis is an indispensable function of microglia, the brain professional phagocytes. Microglia is particularly efficient phagocytosing cells that undergo programmed cell death (apoptosis) in physiological conditions. However, mounting evidence suggests microglial phagocytosis dysfunction in multiple brain disorders. These observations prompted us to search for phagocytosis modulators (enhancers or inhibitors) with therapeutic potential. We used a bottom-up strategy that consisted on the identification of phagocytosis modulators using phenotypic high throughput screenings (HTSs) in cell culture and validation in organotypic cultures and in vivo. We performed two complementary HTS campagnes: at Achucarro, we used primary cultures of mouse microglia and compounds of the Prestwick Chemical Library; at Roche, we used human iPSC derived macrophage-like cells and a proprietary chemo-genomic library with 2200 compounds with known mechanism-of-action. Next, we validated the more robust compounds using hippocampal organotypic cultures and identified two phagocytosis inhibitors: trifluoperazine, a dopaminergic and adrenergic antagonist used as an antipsychotic and antineoplastic; and deoxytubercidin, a ribose derivative. Finally, we tested whether these compounds were able to modulate phagocytosis of apoptotic newborn cells in the adult hippocampal neurogenic niche in vivo by administering them into the mouse hippocampus using osmotic minipumps. We confirmed that both trifluoperazine and deoxytubercidin have anti-phagocytic activity in vivo, and validated our bottom-up strategy to identify novel phagocytosis modulators. These results show that chemical libraries with annotated mechanism of action are an starting point for the pharmacological modulation of microglia in drug discovery projects aiming at the therapeutic manipulation of phagocytosis in brain diseases.

吞噬是大脑专业吞噬细胞--小胶质细胞不可或缺的功能。在生理条件下,小胶质细胞尤其能高效吞噬发生程序性细胞死亡(凋亡)的细胞。然而,越来越多的证据表明,在多种脑部疾病中,小胶质细胞的吞噬功能存在障碍。这些观察结果促使我们寻找具有治疗潜力的吞噬调节剂(增强剂或抑制剂)。我们采用了自下而上的策略,包括在细胞培养中使用表型高通量筛选(HTS)鉴定吞噬调节剂,并在器官型培养物和体内进行验证。我们进行了两个互补的 HTS 试验:在 Achucarro,我们使用了小鼠小胶质细胞的原代培养物和 Prestwick 化学文库中的化合物;在罗氏,我们使用了人 iPSC 衍生的巨噬细胞样细胞和包含 2200 种已知作用机制化合物的专有化学基因组文库。接下来,我们利用海马器官型培养物验证了更强效的化合物,并确定了两种吞噬抑制剂:三氟哌嗪(一种多巴胺能和肾上腺素能拮抗剂,用作抗精神病药和抗肿瘤药)和脱氧小檗碱(一种核糖衍生物)。最后,我们通过使用渗透性微型泵将这些化合物注入小鼠海马,测试它们是否能够调节体内成年海马神经源龛中新生细胞凋亡的吞噬作用。我们证实三氟拉嗪和脱氧小檗碱都具有体内抗吞噬活性,并验证了我们自下而上识别新型吞噬调节剂的策略。这些结果表明,在药物发现项目中,注释了作用机制的化学库是对小胶质细胞进行药理调节的起点,其目的是对脑部疾病中的吞噬作用进行治疗操纵。
{"title":"A bottom-up approach identifies the antipsychotic and antineoplastic trifluoperazine and the ribose derivative deoxytubercidin as novel microglial phagocytosis inhibitors.","authors":"Noelia Rodriguez-Iglesias, Iñaki Paris, Jorge Valero, Lorena Cañas-Zabala, Alejandro Carretero, Klas Hatje, Jitao David Zhang, Christoph Patsch, Markus Britschgi, Simon Gutbier, Amanda Sierra","doi":"10.1002/glia.24637","DOIUrl":"https://doi.org/10.1002/glia.24637","url":null,"abstract":"<p><p>Phagocytosis is an indispensable function of microglia, the brain professional phagocytes. Microglia is particularly efficient phagocytosing cells that undergo programmed cell death (apoptosis) in physiological conditions. However, mounting evidence suggests microglial phagocytosis dysfunction in multiple brain disorders. These observations prompted us to search for phagocytosis modulators (enhancers or inhibitors) with therapeutic potential. We used a bottom-up strategy that consisted on the identification of phagocytosis modulators using phenotypic high throughput screenings (HTSs) in cell culture and validation in organotypic cultures and in vivo. We performed two complementary HTS campagnes: at Achucarro, we used primary cultures of mouse microglia and compounds of the Prestwick Chemical Library; at Roche, we used human iPSC derived macrophage-like cells and a proprietary chemo-genomic library with 2200 compounds with known mechanism-of-action. Next, we validated the more robust compounds using hippocampal organotypic cultures and identified two phagocytosis inhibitors: trifluoperazine, a dopaminergic and adrenergic antagonist used as an antipsychotic and antineoplastic; and deoxytubercidin, a ribose derivative. Finally, we tested whether these compounds were able to modulate phagocytosis of apoptotic newborn cells in the adult hippocampal neurogenic niche in vivo by administering them into the mouse hippocampus using osmotic minipumps. We confirmed that both trifluoperazine and deoxytubercidin have anti-phagocytic activity in vivo, and validated our bottom-up strategy to identify novel phagocytosis modulators. These results show that chemical libraries with annotated mechanism of action are an starting point for the pharmacological modulation of microglia in drug discovery projects aiming at the therapeutic manipulation of phagocytosis in brain diseases.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Glia
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1