PlaqueNet: deep learning enabled coronary artery plaque segmentation from coronary computed tomography angiography.

IF 6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Visual Computing for Industry Biomedicine and Art Pub Date : 2024-03-22 DOI:10.1186/s42492-024-00157-8
Linyuan Wang, Xiaofeng Zhang, Congyu Tian, Shu Chen, Yongzhi Deng, Xiangyun Liao, Qiong Wang, Weixin Si
{"title":"PlaqueNet: deep learning enabled coronary artery plaque segmentation from coronary computed tomography angiography.","authors":"Linyuan Wang, Xiaofeng Zhang, Congyu Tian, Shu Chen, Yongzhi Deng, Xiangyun Liao, Qiong Wang, Weixin Si","doi":"10.1186/s42492-024-00157-8","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disease, primarily caused by atherosclerotic plaque formation, is a significant health concern. The early detection of these plaques is crucial for targeted therapies and reducing the risk of cardiovascular diseases. This study presents PlaqueNet, a solution for segmenting coronary artery plaques from coronary computed tomography angiography (CCTA) images. For feature extraction, the advanced residual net module was utilized, which integrates a deepwise residual optimization module into network branches, enhances feature extraction capabilities, avoiding information loss, and addresses gradient issues during training. To improve segmentation accuracy, a depthwise atrous spatial pyramid pooling based on bicubic efficient channel attention (DASPP-BICECA) module is introduced. The BICECA component amplifies the local feature sensitivity, whereas the DASPP component expands the network's information-gathering scope, resulting in elevated segmentation accuracy. Additionally, BINet, a module for joint network loss evaluation, is proposed. It optimizes the segmentation model without affecting the segmentation results. When combined with the DASPP-BICECA module, BINet enhances overall efficiency. The CCTA segmentation algorithm proposed in this study outperformed the other three comparative algorithms, achieving an intersection over Union of 87.37%, Dice of 93.26%, accuracy of 93.12%, mean intersection over Union of 93.68%, mean Dice of 96.63%, and mean pixel accuracy value of 96.55%.</p>","PeriodicalId":29931,"journal":{"name":"Visual Computing for Industry Biomedicine and Art","volume":"7 1","pages":"6"},"PeriodicalIF":6.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349722/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry Biomedicine and Art","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-024-00157-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular disease, primarily caused by atherosclerotic plaque formation, is a significant health concern. The early detection of these plaques is crucial for targeted therapies and reducing the risk of cardiovascular diseases. This study presents PlaqueNet, a solution for segmenting coronary artery plaques from coronary computed tomography angiography (CCTA) images. For feature extraction, the advanced residual net module was utilized, which integrates a deepwise residual optimization module into network branches, enhances feature extraction capabilities, avoiding information loss, and addresses gradient issues during training. To improve segmentation accuracy, a depthwise atrous spatial pyramid pooling based on bicubic efficient channel attention (DASPP-BICECA) module is introduced. The BICECA component amplifies the local feature sensitivity, whereas the DASPP component expands the network's information-gathering scope, resulting in elevated segmentation accuracy. Additionally, BINet, a module for joint network loss evaluation, is proposed. It optimizes the segmentation model without affecting the segmentation results. When combined with the DASPP-BICECA module, BINet enhances overall efficiency. The CCTA segmentation algorithm proposed in this study outperformed the other three comparative algorithms, achieving an intersection over Union of 87.37%, Dice of 93.26%, accuracy of 93.12%, mean intersection over Union of 93.68%, mean Dice of 96.63%, and mean pixel accuracy value of 96.55%.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PlaqueNet:通过深度学习从冠状动脉计算机断层扫描血管造影中分割冠状动脉斑块。
主要由动脉粥样硬化斑块形成引起的心血管疾病是一个重大的健康问题。这些斑块的早期检测对于靶向治疗和降低心血管疾病风险至关重要。本研究介绍了从冠状动脉计算机断层扫描(CCTA)图像中分割冠状动脉斑块的解决方案 PlaqueNet。在特征提取方面,采用了先进的残差网模块,该模块将深度残差优化模块集成到网络分支中,增强了特征提取能力,避免了信息丢失,并解决了训练过程中的梯度问题。为提高分割精度,引入了基于双立方高效通道注意的深度无性空间金字塔池化(DASPP-BICECA)模块。BICECA 部分放大了局部特征灵敏度,而 DASPP 部分则扩大了网络的信息收集范围,从而提高了分割精度。此外,还提出了联合网络损失评估模块 BINet。它在不影响分割结果的情况下优化了分割模型。当与 DASPP-BICECA 模块结合使用时,BINet 可提高整体效率。本研究提出的 CCTA 分割算法优于其他三种比较算法,实现了 87.37% 的联合交叉率、93.26% 的骰子率、93.12% 的准确率、93.68% 的平均联合交叉率、96.63% 的平均骰子率和 96.55% 的平均像素准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
期刊最新文献
Artificial intelligence-aided assignment of journal submissions to associate editors-a feasibility study on IEEE transactions on medical imaging. Text-to-3D scene generation framework: bridging textual descriptions to high-fidelity 3D scenes. Enhanced temporal encoding-decoding for survival analysis of multimodal clinical data in smart healthcare. Comprehensive review of machine learning and deep learning techniques for epileptic seizure detection and prediction based on neuroimaging modalities. Body Cosmos 2.0: embodied biofeedback interface for dancing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1