Charge-Mode Neural Stimulator With a Capacitor-Reuse Residual Charge Detector and Active Charge Balancing for Epileptic Seizure Suppression

Shuenn-Yuh Lee;Zhan-Xian Liao;I-Ting Feng;Hao-Yun Lee;Chou-Ching Lin
{"title":"Charge-Mode Neural Stimulator With a Capacitor-Reuse Residual Charge Detector and Active Charge Balancing for Epileptic Seizure Suppression","authors":"Shuenn-Yuh Lee;Zhan-Xian Liao;I-Ting Feng;Hao-Yun Lee;Chou-Ching Lin","doi":"10.1109/TBCAS.2024.3380055","DOIUrl":null,"url":null,"abstract":"This study proposes a charge-mode neural stimulator for electrical stimulation systems that utilizes a capacitor-reuse technique with a residual charge detector and achieves active charge balancing simultaneously. The design is mainly used for epilepsy suppression systems to achieve real-time symptom relief during seizures. A charge-mode stimulator is adopted in consideration of the complexity of circuit design, the high voltage tolerance of transistors, and system integration requirements in the future. The residual charge detector allows users to understand the current stimulus situation, enabling them to make optimal adjustments to the stimulation parameters. On the basis of the information on actual stimulation charge, active charge balancing can effectively prevent the accumulation of mismatched charges on electrode impedance. The capacitor- and phase-reuse techniques help realize high integration of the overall stimulator circuit in consideration of the commonality of the use of a capacitor and charging/discharging phase in the stimulation circuit and charge detector. The proposed charge-mode neural stimulator is implemented in a TSMC 0.18 µm 1P6M CMOS process with a core area of 0.2127 mm\n<sup>2</sup>\n. Measurement results demonstrate the accuracy of the stimulation’s functionality and the programmable stimulus parameters. The effectiveness of the proposed charge-mode neural stimulator for epileptic seizure suppression is verified through animal experiments.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 5","pages":"1065-1078"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10477671/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a charge-mode neural stimulator for electrical stimulation systems that utilizes a capacitor-reuse technique with a residual charge detector and achieves active charge balancing simultaneously. The design is mainly used for epilepsy suppression systems to achieve real-time symptom relief during seizures. A charge-mode stimulator is adopted in consideration of the complexity of circuit design, the high voltage tolerance of transistors, and system integration requirements in the future. The residual charge detector allows users to understand the current stimulus situation, enabling them to make optimal adjustments to the stimulation parameters. On the basis of the information on actual stimulation charge, active charge balancing can effectively prevent the accumulation of mismatched charges on electrode impedance. The capacitor- and phase-reuse techniques help realize high integration of the overall stimulator circuit in consideration of the commonality of the use of a capacitor and charging/discharging phase in the stimulation circuit and charge detector. The proposed charge-mode neural stimulator is implemented in a TSMC 0.18 µm 1P6M CMOS process with a core area of 0.2127 mm 2 . Measurement results demonstrate the accuracy of the stimulation’s functionality and the programmable stimulus parameters. The effectiveness of the proposed charge-mode neural stimulator for epileptic seizure suppression is verified through animal experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带电容重复使用剩余电荷检测器和主动电荷平衡功能的电荷模式神经刺激器,用于抑制癫痫发作。
本研究提出了一种用于电刺激系统的电荷模式神经刺激器,它利用电容器重复使用技术和残余电荷检测器,同时实现主动电荷平衡。该设计主要用于癫痫抑制系统,以实现癫痫发作时症状的实时缓解。采用电荷模式刺激器是考虑到电路设计的复杂性、晶体管的高耐压性以及未来的系统集成要求。残余电荷检测器可让用户了解当前的刺激情况,从而对刺激参数做出最佳调整。在实际刺激电荷信息的基础上,主动电荷平衡可有效防止电极阻抗上不匹配电荷的积累。考虑到刺激电路和电荷检测器中使用电容器和充放电相位的共性,电容器和相位重复使用技术有助于实现整个刺激器电路的高度集成。所提出的电荷模式神经刺激器是在核心面积为 0.2127 mm2 的 TSMC 0.18 μm 1P6M CMOS 工艺中实现的。测量结果证明了刺激功能和可编程刺激参数的准确性。通过动物实验验证了所提出的电荷模式神经刺激器在抑制癫痫发作方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Energy-Efficient and Artifact-Resilient ASIC for Simultaneous Neural Recording and Optogenetic Stimulation. Integrated Real-Time CMOS Luminescence Sensing and Impedance Spectroscopy in Droplet Microfluidics. Dynamic sub-array selection-based energy-efficient localization and tracking method to power implanted medical devices in scattering heterogenous media employing ultrasound. A Reconfigurable Bidirectional Wireless Power and Full-Duplex Data Transceiver IC for Wearable Biomedical Applications. An Ultrasonic Transceiver for Non-Invasive Intracranial Pressure Sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1