Cochlear Implant Fold Detection in Intra-operative CT Using Weakly Supervised Multi-task Deep Learning.

Mohammad M R Khan, Yubo Fan, Benoit M Dawant, Jack H Noble
{"title":"Cochlear Implant Fold Detection in Intra-operative CT Using Weakly Supervised Multi-task Deep Learning.","authors":"Mohammad M R Khan, Yubo Fan, Benoit M Dawant, Jack H Noble","doi":"10.1007/978-3-031-43996-4_24","DOIUrl":null,"url":null,"abstract":"<p><p>In cochlear implant (CI) procedures, an electrode array is surgically inserted into the cochlea. The electrodes are used to stimulate the auditory nerve and restore hearing sensation for the recipient. If the array folds inside the cochlea during the insertion procedure, it can lead to trauma, damage to the residual hearing, and poor hearing restoration. Intraoperative detection of such a case can allow a surgeon to perform reimplantation. However, this intraoperative detection requires experience and electrophysiological tests sometimes fail to detect an array folding. Due to the low incidence of array folding, we generated a dataset of CT images with folded synthetic electrode arrays with realistic metal artifact. The dataset was used to train a multitask custom 3D-UNet model for array fold detection. We tested the trained model on real post-operative CTs (7 with folded arrays and 200 without). Our model could correctly classify all the fold-over cases while misclassifying only 3 non fold-over cases. Therefore, the model is a promising option for array fold detection.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14228 ","pages":"249-259"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10953791/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43996-4_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In cochlear implant (CI) procedures, an electrode array is surgically inserted into the cochlea. The electrodes are used to stimulate the auditory nerve and restore hearing sensation for the recipient. If the array folds inside the cochlea during the insertion procedure, it can lead to trauma, damage to the residual hearing, and poor hearing restoration. Intraoperative detection of such a case can allow a surgeon to perform reimplantation. However, this intraoperative detection requires experience and electrophysiological tests sometimes fail to detect an array folding. Due to the low incidence of array folding, we generated a dataset of CT images with folded synthetic electrode arrays with realistic metal artifact. The dataset was used to train a multitask custom 3D-UNet model for array fold detection. We tested the trained model on real post-operative CTs (7 with folded arrays and 200 without). Our model could correctly classify all the fold-over cases while misclassifying only 3 non fold-over cases. Therefore, the model is a promising option for array fold detection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用弱监督多任务深度学习在术中 CT 中检测人工耳蜗褶皱
在人工耳蜗植入(CI)手术中,通过手术将电极阵列植入耳蜗。电极用于刺激听觉神经,恢复受术者的听觉。如果电极阵列在插入过程中折叠在耳蜗内,可能会导致创伤、残余听力受损和听力恢复不良。术中发现这种情况后,外科医生就可以进行再植入手术。然而,术中检测需要经验,而且电生理测试有时也无法检测到阵列折叠。由于阵列折叠的发生率较低,我们生成了一个带有折叠合成电极阵列和真实金属伪影的 CT 图像数据集。该数据集用于训练多任务定制 3D-UNet 模型,以检测阵列折叠。我们在真实的术后 CT 图像(7 幅有折叠阵列,200 幅无折叠阵列)上测试了训练好的模型。我们的模型可以正确分类所有折叠病例,而仅误分了 3 个非折叠病例。因此,该模型在阵列折叠检测方面大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Zoom Pattern Signatures for Fetal Ultrasound Structures. Self-guided Knowledge-Injected Graph Neural Network for Alzheimer's Diseases. Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation. Attention-Enhanced Fusion of Structural and Functional MRI for Analyzing HIV-Associated Asymptomatic Neurocognitive Impairment. Tagged-to-Cine MRI Sequence Synthesis via Light Spatial-Temporal Transformer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1