{"title":"Removal of heavy metals using cellulose-based materials: A mini-review","authors":"Naveen Chandra Joshi , Aroma Joshi , Debasis Mitra , Prateek Gururani , Niraj Kumar , Hemant Kumar Joshi","doi":"10.1016/j.enmm.2024.100942","DOIUrl":null,"url":null,"abstract":"<div><p>Heavy metals are the main inorganic contaminants, and their presence in aquatic bodies causes many health and environmental issues. Different man-made activities, such as agriculture, mining, industrialization, urbanisation, thermal power plants, and others, release heavy metals into the water system. These contaminants cause major health issues for humans and other organisms. Adsorption-based heavy metal removal from wastewater is a feasible, adequate, and suitable method for treating a large amount of wastewater. Naturally occurring cellulose is a potential candidate for various applications as a result of its excellent physico-chemical and mechanical features. Several experimental investigations have been conducted in the context of the use of materials based on cellulose for the adsorption-based removal of heavy metals from wastewater. These investigations attempt to determine the extent to which cellulose-based materials may adsorb heavy metals from wastewater or water. The use of nanocellulose-based materials in the adsorptive removal of heavy metals from aqueous media provides some advancements like enhanced surface area, biocompatibility, and superior mechanical features. The present article covers an adequate literature review for the potential of cellulose-based materials in the adsorptive removal of heavy metals.</p></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"21 ","pages":"Article 100942"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224000308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metals are the main inorganic contaminants, and their presence in aquatic bodies causes many health and environmental issues. Different man-made activities, such as agriculture, mining, industrialization, urbanisation, thermal power plants, and others, release heavy metals into the water system. These contaminants cause major health issues for humans and other organisms. Adsorption-based heavy metal removal from wastewater is a feasible, adequate, and suitable method for treating a large amount of wastewater. Naturally occurring cellulose is a potential candidate for various applications as a result of its excellent physico-chemical and mechanical features. Several experimental investigations have been conducted in the context of the use of materials based on cellulose for the adsorption-based removal of heavy metals from wastewater. These investigations attempt to determine the extent to which cellulose-based materials may adsorb heavy metals from wastewater or water. The use of nanocellulose-based materials in the adsorptive removal of heavy metals from aqueous media provides some advancements like enhanced surface area, biocompatibility, and superior mechanical features. The present article covers an adequate literature review for the potential of cellulose-based materials in the adsorptive removal of heavy metals.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation