Removal of heavy metals using cellulose-based materials: A mini-review

Naveen Chandra Joshi , Aroma Joshi , Debasis Mitra , Prateek Gururani , Niraj Kumar , Hemant Kumar Joshi
{"title":"Removal of heavy metals using cellulose-based materials: A mini-review","authors":"Naveen Chandra Joshi ,&nbsp;Aroma Joshi ,&nbsp;Debasis Mitra ,&nbsp;Prateek Gururani ,&nbsp;Niraj Kumar ,&nbsp;Hemant Kumar Joshi","doi":"10.1016/j.enmm.2024.100942","DOIUrl":null,"url":null,"abstract":"<div><p>Heavy metals are the main inorganic contaminants, and their presence in aquatic bodies causes many health and environmental issues. Different man-made activities, such as agriculture, mining, industrialization, urbanisation, thermal power plants, and others, release heavy metals into the water system. These contaminants cause major health issues for humans and other organisms. Adsorption-based heavy metal removal from wastewater is a feasible, adequate, and suitable method for treating a large amount of wastewater. Naturally occurring cellulose is a potential candidate for various applications as a result of its excellent physico-chemical and mechanical features. Several experimental investigations have been conducted in the context of the use of materials based on cellulose for the adsorption-based removal of heavy metals from wastewater. These investigations attempt to determine the extent to which cellulose-based materials may adsorb heavy metals from wastewater or water. The use of nanocellulose-based materials in the adsorptive removal of heavy metals from aqueous media provides some advancements like enhanced surface area, biocompatibility, and superior mechanical features. The present article covers an adequate literature review for the potential of cellulose-based materials in the adsorptive removal of heavy metals.</p></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"21 ","pages":"Article 100942"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224000308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy metals are the main inorganic contaminants, and their presence in aquatic bodies causes many health and environmental issues. Different man-made activities, such as agriculture, mining, industrialization, urbanisation, thermal power plants, and others, release heavy metals into the water system. These contaminants cause major health issues for humans and other organisms. Adsorption-based heavy metal removal from wastewater is a feasible, adequate, and suitable method for treating a large amount of wastewater. Naturally occurring cellulose is a potential candidate for various applications as a result of its excellent physico-chemical and mechanical features. Several experimental investigations have been conducted in the context of the use of materials based on cellulose for the adsorption-based removal of heavy metals from wastewater. These investigations attempt to determine the extent to which cellulose-based materials may adsorb heavy metals from wastewater or water. The use of nanocellulose-based materials in the adsorptive removal of heavy metals from aqueous media provides some advancements like enhanced surface area, biocompatibility, and superior mechanical features. The present article covers an adequate literature review for the potential of cellulose-based materials in the adsorptive removal of heavy metals.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纤维素基材料去除重金属:微型综述
重金属是主要的无机污染物,它们在水体中的存在造成了许多健康和环境问题。不同的人为活动,如农业、采矿、工业化、城市化、热电厂等,都会向水系统释放重金属。这些污染物对人类和其他生物造成了严重的健康问题。以吸附为基础去除废水中的重金属是一种可行、充分且适合处理大量废水的方法。天然纤维素具有优异的物理化学和机械特性,是各种应用的潜在候选材料。在使用纤维素材料吸附去除废水中的重金属方面,已经进行了多项实验研究。这些研究试图确定纤维素材料对废水或水中重金属的吸附程度。使用纳米纤维素基材料吸附去除水介质中的重金属具有一些优势,如表面积增大、生物相容性和机械性能优异。本文对纤维素基材料在吸附去除重金属方面的潜力进行了充分的文献综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
期刊最新文献
Evaluation of sediment and water quality status of Parakkai Lake, part of the Suchindram Theroor Wetland complex (a Ramsar Site), using various pollution indices Seasonal variation of meso- and micro-plastics in water and sediments of coastal communities in Ondo State, Nigeria An integrated approach towards groundwater quality and human health risk assessment in the Indo-Gangetic plains of West Bengal, India A review of metal nanomaterials-based electrochemical biosensors for environmental wastewater monitoring and their remediation Metal nanoparticles in flaxseed and orange Waste: Sustainable Applications as Antimicrobial agents in water treatment systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1