Sufficient and Necessary Conditions for the Identifiability of DINA Models with Polytomous Responses.

IF 3.1 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Psychometrika Pub Date : 2024-06-01 Epub Date: 2024-03-22 DOI:10.1007/s11336-024-09961-w
Mengqi Lin, Gongjun Xu
{"title":"Sufficient and Necessary Conditions for the Identifiability of DINA Models with Polytomous Responses.","authors":"Mengqi Lin, Gongjun Xu","doi":"10.1007/s11336-024-09961-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive diagnosis models (CDMs) provide a powerful statistical and psychometric tool for researchers and practitioners to learn fine-grained diagnostic information about respondents' latent attributes. There has been a growing interest in the use of CDMs for polytomous response data, as more and more items with multiple response options become widely used. Similar to many latent variable models, the identifiability of CDMs is critical for accurate parameter estimation and valid statistical inference. However, the existing identifiability results are primarily focused on binary response models and have not adequately addressed the identifiability of CDMs with polytomous responses. This paper addresses this gap by presenting sufficient and necessary conditions for the identifiability of the widely used DINA model with polytomous responses, with the aim to provide a comprehensive understanding of the identifiability of CDMs with polytomous responses and to inform future research in this field.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"717-740"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-024-09961-w","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Cognitive diagnosis models (CDMs) provide a powerful statistical and psychometric tool for researchers and practitioners to learn fine-grained diagnostic information about respondents' latent attributes. There has been a growing interest in the use of CDMs for polytomous response data, as more and more items with multiple response options become widely used. Similar to many latent variable models, the identifiability of CDMs is critical for accurate parameter estimation and valid statistical inference. However, the existing identifiability results are primarily focused on binary response models and have not adequately addressed the identifiability of CDMs with polytomous responses. This paper addresses this gap by presenting sufficient and necessary conditions for the identifiability of the widely used DINA model with polytomous responses, with the aim to provide a comprehensive understanding of the identifiability of CDMs with polytomous responses and to inform future research in this field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多态响应 DINA 模型可识别性的充分和必要条件
认知诊断模型(CDMs)为研究人员和从业人员提供了一种强大的统计和心理测量工具,用于了解受访者潜在属性的精细诊断信息。随着越来越多的具有多重响应选项的项目被广泛使用,人们对使用 CDMs 处理多态响应数据的兴趣日益浓厚。与许多潜变量模型类似,CDM 的可识别性对于准确的参数估计和有效的统计推断至关重要。然而,现有的可识别性结果主要集中在二元响应模型上,并没有充分解决多态响应 CDM 的可识别性问题。本文针对这一空白,提出了被广泛使用的具有多态响应的 DINA 模型的可识别性的充分和必要条件,旨在提供对具有多态响应的 CDM 的可识别性的全面理解,并为该领域的未来研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
期刊最新文献
Navigating Cognitive Maps: Statistical Analysis of 3D Path Data in Minecraft. Identification and Scaling of Latent Variables in Ordinal Factor Analysis. A Tutorial on Estimating the Precision of Individual Test Scores for Anyone Constructing and Using Psychological Tests. Regularized Joint Maximum Likelihood Estimation of Latent Space Item Response Models. Estimating Latent Distribution of Item Response Theory Using Kernel Density Method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1