Yi-Lin Zhao , Han-Jun Sun , Xiao-Dan Wang , Jie Ding , Mei-Yun Lu , Ji-Wei Pang , Da-Peng Zhou , Ming Liang , Nan-Qi Ren , Shan-Shan Yang
{"title":"Spatiotemporal drivers of urban water pollution: Assessment of 102 cities across the Yangtze River Basin","authors":"Yi-Lin Zhao , Han-Jun Sun , Xiao-Dan Wang , Jie Ding , Mei-Yun Lu , Ji-Wei Pang , Da-Peng Zhou , Ming Liang , Nan-Qi Ren , Shan-Shan Yang","doi":"10.1016/j.ese.2024.100412","DOIUrl":null,"url":null,"abstract":"<div><p>Effective management of large basins necessitates pinpointing the spatial and temporal drivers of primary index exceedances and urban risk factors, offering crucial insights for basin administrators. Yet, comprehensive examinations of multiple pollutants within the Yangtze River Basin remain scarce. Here we introduce a pollution inventory for urban clusters surrounding the Yangtze River Basin, analyzing water quality data from 102 cities during 2018–2019. We assessed the exceedance rates for six pivotal indicators: dissolved oxygen (DO), ammonia nitrogen (NH<sub>3</sub>–N), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total phosphorus (TP), and the permanganate index (COD<sub>Mn</sub>) for each city. Employing random forest regression and SHapley Additive exPlanations (SHAP) analyses, we identified the spatiotemporal factors influencing these key indicators. Our results highlight agricultural activities as the primary contributors to the exceedance of all six indicators, thus pinpointing them as the leading pollution source in the basin. Additionally, forest coverage, livestock farming, chemical and pharmaceutical sectors, along with meteorological elements like precipitation and temperature, significantly impacted various indicators' exceedances. Furthermore, we delineate five core urban risk components through principal component analysis, which are (1) anthropogenic and industrial activities, (2) agricultural practices and forest extent, (3) climatic variables, (4) livestock rearing, and (5) principal polluting sectors. The cities were subsequently evaluated and categorized based on these risk components, incorporating policy interventions and administrative performance within each region. The comprehensive analysis advocates for a customized strategy in addressing the discerned risk factors, especially for cities presenting elevated risk levels.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000267/pdfft?md5=925f784a52b136b0b980715b93bbbac5&pid=1-s2.0-S2666498424000267-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424000267","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Effective management of large basins necessitates pinpointing the spatial and temporal drivers of primary index exceedances and urban risk factors, offering crucial insights for basin administrators. Yet, comprehensive examinations of multiple pollutants within the Yangtze River Basin remain scarce. Here we introduce a pollution inventory for urban clusters surrounding the Yangtze River Basin, analyzing water quality data from 102 cities during 2018–2019. We assessed the exceedance rates for six pivotal indicators: dissolved oxygen (DO), ammonia nitrogen (NH3–N), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total phosphorus (TP), and the permanganate index (CODMn) for each city. Employing random forest regression and SHapley Additive exPlanations (SHAP) analyses, we identified the spatiotemporal factors influencing these key indicators. Our results highlight agricultural activities as the primary contributors to the exceedance of all six indicators, thus pinpointing them as the leading pollution source in the basin. Additionally, forest coverage, livestock farming, chemical and pharmaceutical sectors, along with meteorological elements like precipitation and temperature, significantly impacted various indicators' exceedances. Furthermore, we delineate five core urban risk components through principal component analysis, which are (1) anthropogenic and industrial activities, (2) agricultural practices and forest extent, (3) climatic variables, (4) livestock rearing, and (5) principal polluting sectors. The cities were subsequently evaluated and categorized based on these risk components, incorporating policy interventions and administrative performance within each region. The comprehensive analysis advocates for a customized strategy in addressing the discerned risk factors, especially for cities presenting elevated risk levels.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.