Héctor Vargas-Calderón , Emmanuel Ortega-Robles , Luisa Rocha , Philipp Yu , Oscar Arias-Carrión
{"title":"Motor, Cognitive, and Behavioral Impairment in TLR3 and TLR9 Deficient Male Mice: Insights into the Non-Immunological Roles of Toll-Like Receptors","authors":"Héctor Vargas-Calderón , Emmanuel Ortega-Robles , Luisa Rocha , Philipp Yu , Oscar Arias-Carrión","doi":"10.1016/j.arcmed.2024.102985","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Toll-like receptors (TLRs) play a critical role in initiating the innate immune response to infection or injury. Recent studies have uncovered their intriguing functions as moonlighting proteins involved in various biological processes, including development, learning, and memory. However, the specific functions of individual TLRs are still largely unknown.</p></div><div><h3>Aims</h3><p>We investigated the effects of TLR3 and TLR9 receptor deficiency on motor, cognitive, and behavioral functions during development using genetically modified male mice of different ages.</p></div><div><h3>Methods</h3><p>We evaluated the motor coordination, anxiety-like behavior, spatial learning, and working memory of male mice lacking the TLR3 and TLR9 genes at different ages (two, four, six, and eight months) using the rotarod, open field, water maze, and T-maze tests.</p></div><div><h3>Results</h3><p>We observed that the deletion of either TLR3 or TLR9 resulted in impaired motor performance. Furthermore, young TLR3-deficient mice exhibited reduced anxiety-like behavior and spatial learning deficits; however, their working memory was unaffected. In contrast, young TLR9-knockout mice showed hyperactivity and a tendency toward decreased working memory.</p></div><div><h3>Conclusions</h3><p>These findings provide valuable insights into the broader roles of the TLR system beyond the innate immune response, revealing its involvement in pathways associated with the central nervous system. Importantly, our results establish a strong association between the endosomal receptors TLR3 and TLR9 and the performance of motor, cognitive, and behavioral tasks that change over time. This study contributes to the growing body of research on the multifaceted functions of TLRs and enhances our understanding of their participation in non-immune-related processes.</p></div>","PeriodicalId":8318,"journal":{"name":"Archives of Medical Research","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Medical Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0188440924000389","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Toll-like receptors (TLRs) play a critical role in initiating the innate immune response to infection or injury. Recent studies have uncovered their intriguing functions as moonlighting proteins involved in various biological processes, including development, learning, and memory. However, the specific functions of individual TLRs are still largely unknown.
Aims
We investigated the effects of TLR3 and TLR9 receptor deficiency on motor, cognitive, and behavioral functions during development using genetically modified male mice of different ages.
Methods
We evaluated the motor coordination, anxiety-like behavior, spatial learning, and working memory of male mice lacking the TLR3 and TLR9 genes at different ages (two, four, six, and eight months) using the rotarod, open field, water maze, and T-maze tests.
Results
We observed that the deletion of either TLR3 or TLR9 resulted in impaired motor performance. Furthermore, young TLR3-deficient mice exhibited reduced anxiety-like behavior and spatial learning deficits; however, their working memory was unaffected. In contrast, young TLR9-knockout mice showed hyperactivity and a tendency toward decreased working memory.
Conclusions
These findings provide valuable insights into the broader roles of the TLR system beyond the innate immune response, revealing its involvement in pathways associated with the central nervous system. Importantly, our results establish a strong association between the endosomal receptors TLR3 and TLR9 and the performance of motor, cognitive, and behavioral tasks that change over time. This study contributes to the growing body of research on the multifaceted functions of TLRs and enhances our understanding of their participation in non-immune-related processes.
期刊介绍:
Archives of Medical Research serves as a platform for publishing original peer-reviewed medical research, aiming to bridge gaps created by medical specialization. The journal covers three main categories - biomedical, clinical, and epidemiological contributions, along with review articles and preliminary communications. With an international scope, it presents the study of diseases from diverse perspectives, offering the medical community original investigations ranging from molecular biology to clinical epidemiology in a single publication.