{"title":"Forecasting Gender in Open Education Competencies: A Machine Learning Approach","authors":"Gerardo Ibarra-Vazquez;María Soledad Ramírez-Montoya;Mariana Buenestado-Fernández","doi":"10.1109/TLT.2023.3336541","DOIUrl":null,"url":null,"abstract":"This article aims to study the performance of machine learning models in forecasting gender based on the students' open education competency perception. Data were collected from a convenience sample of 326 students from 26 countries using the eOpen instrument. The analysis comprises 1) a study of the students' perceptions of knowledge, skills, and attitudes or values related to open education and its subcompetencies from a 30-item questionnaire using machine learning models to forecast participants' gender, 2) validation of performance through cross-validation methods, 3) statistical analysis to find significant differences between machine learning models, and 4) an analysis from explainable machine learning models to find relevant features to forecast gender. The results confirm our hypothesis that the performance of machine learning models can effectively forecast gender based on the student's perceptions of knowledge, skills, and attitudes or values related to open education competency.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"17 ","pages":"1236-1247"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10334475","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10334475/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This article aims to study the performance of machine learning models in forecasting gender based on the students' open education competency perception. Data were collected from a convenience sample of 326 students from 26 countries using the eOpen instrument. The analysis comprises 1) a study of the students' perceptions of knowledge, skills, and attitudes or values related to open education and its subcompetencies from a 30-item questionnaire using machine learning models to forecast participants' gender, 2) validation of performance through cross-validation methods, 3) statistical analysis to find significant differences between machine learning models, and 4) an analysis from explainable machine learning models to find relevant features to forecast gender. The results confirm our hypothesis that the performance of machine learning models can effectively forecast gender based on the student's perceptions of knowledge, skills, and attitudes or values related to open education competency.
期刊介绍:
The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.