{"title":"1H, 15N and13C resonance assignments of S2A mutant of human carbonic anhydrase II","authors":"Neelam, Himanshu Singh","doi":"10.1007/s12104-024-10166-6","DOIUrl":null,"url":null,"abstract":"<div><p>In preparation for a detailed exploration of the structural and functional aspects of the Ser2Ala mutant of human carbonic anhydrase II, we present here almost complete sequence-specific resonance assignments for <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C. The mutation of serine to alanine at position 2, located in the N-terminal region of the enzyme, significantly alters the hydrophilic nature of the site, rendering it hydrophobic. Consequently, there is an underlying assumption that this mutation would repel water from the site. However, intriguingly, comparative analysis of the mutant structure with the wild type reveals minimal discernible differences. These assignments serve as the basis for in-depth studies on histidine dynamics, protonation states, and its intricate role in protein-water interactions and catalysis.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"18 1","pages":"45 - 49"},"PeriodicalIF":0.8000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-024-10166-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In preparation for a detailed exploration of the structural and functional aspects of the Ser2Ala mutant of human carbonic anhydrase II, we present here almost complete sequence-specific resonance assignments for 1H, 15N, and 13C. The mutation of serine to alanine at position 2, located in the N-terminal region of the enzyme, significantly alters the hydrophilic nature of the site, rendering it hydrophobic. Consequently, there is an underlying assumption that this mutation would repel water from the site. However, intriguingly, comparative analysis of the mutant structure with the wild type reveals minimal discernible differences. These assignments serve as the basis for in-depth studies on histidine dynamics, protonation states, and its intricate role in protein-water interactions and catalysis.
期刊介绍:
Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties.
Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.