Jianmin Li, Daniel Li, Ali Alaraj, Xinjian Du, Kezhou Wang, Fady T. Charbel
{"title":"A patient-specific circle of Willis blood flow model in predicting outcomes of balloon test occlusion","authors":"Jianmin Li, Daniel Li, Ali Alaraj, Xinjian Du, Kezhou Wang, Fady T. Charbel","doi":"10.1111/jon.13198","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>Balloon test occlusion (BTO) evaluates cerebral ischemic tolerance before internal carotid artery (ICA) sacrifice but carries risks like dissection and thrombosis. This study introduces a new approach using a patient-specific circle of Willis (COW) blood flow model, based on non-invasive quantitative MR angiography (qMRA) measurements, to predict the outcomes of BTO.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We developed individualized COW blood flow models for 43 patients undergoing BTO. These models simulated blood flow and pressure under normal conditions and with the ICA occlusion. We then compared the model's predictions of blood flow changes due to the simulated ICA occlusion to actual qMRA measurements before the BTO.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>For all 31 BTO failures, the ipsilateral hemisphere showed an average flow decrease of 15 ± 10% (mean ± standard deviation), compared to 3 ± 2% in the contralateral hemisphere. In all 12 BTO passes, these figures were 6 ± 3% and 1 ± 0.8%, respectively. Notably, all BTO passes had less than a 10% reduction in the ipsilateral hemisphere. In contrast, 65% of BTO failures and 67% single-photon emission computed tomography (SPECT) failures exhibited a decrease of 10% or more in the same region.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Blood flow reduction exceeding 10% in the ipsilateral hemisphere during BTO is a strong predictor of failure in both BTO and SPECT. Our patient-specific COW blood flow models, incorporating detailed flow and arterial geometry data, offered valuable insights for predicting BTO outcomes. These models are especially beneficial for situations where conducting BTO or SPECT is clinically impractical.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"34 4","pages":"438-444"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.13198","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.13198","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Purpose
Balloon test occlusion (BTO) evaluates cerebral ischemic tolerance before internal carotid artery (ICA) sacrifice but carries risks like dissection and thrombosis. This study introduces a new approach using a patient-specific circle of Willis (COW) blood flow model, based on non-invasive quantitative MR angiography (qMRA) measurements, to predict the outcomes of BTO.
Methods
We developed individualized COW blood flow models for 43 patients undergoing BTO. These models simulated blood flow and pressure under normal conditions and with the ICA occlusion. We then compared the model's predictions of blood flow changes due to the simulated ICA occlusion to actual qMRA measurements before the BTO.
Results
For all 31 BTO failures, the ipsilateral hemisphere showed an average flow decrease of 15 ± 10% (mean ± standard deviation), compared to 3 ± 2% in the contralateral hemisphere. In all 12 BTO passes, these figures were 6 ± 3% and 1 ± 0.8%, respectively. Notably, all BTO passes had less than a 10% reduction in the ipsilateral hemisphere. In contrast, 65% of BTO failures and 67% single-photon emission computed tomography (SPECT) failures exhibited a decrease of 10% or more in the same region.
Conclusion
Blood flow reduction exceeding 10% in the ipsilateral hemisphere during BTO is a strong predictor of failure in both BTO and SPECT. Our patient-specific COW blood flow models, incorporating detailed flow and arterial geometry data, offered valuable insights for predicting BTO outcomes. These models are especially beneficial for situations where conducting BTO or SPECT is clinically impractical.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!