Enhancing diagnostic precision in liver lesion analysis using a deep learning-based system: opportunities and challenges

IF 81.1 1区 医学 Q1 ONCOLOGY Nature Reviews Clinical Oncology Pub Date : 2024-03-22 DOI:10.1038/s41571-024-00887-x
Jeong Min Lee, Jae Seok Bae
{"title":"Enhancing diagnostic precision in liver lesion analysis using a deep learning-based system: opportunities and challenges","authors":"Jeong Min Lee, Jae Seok Bae","doi":"10.1038/s41571-024-00887-x","DOIUrl":null,"url":null,"abstract":"A recent study reported the development and validation of the Liver Artificial Intelligence Diagnosis System (LiAIDS), a fully automated system that integrates deep learning for the diagnosis of liver lesions on the basis of contrast-enhanced CT scans and clinical information. This tool improved diagnostic precision, surpassed the accuracy of junior radiologists (and equalled that of senior radiologists) and streamlined patient triage. These advances underscore the potential of artificial intelligence to enhance hepatology care, although challenges to widespread clinical implementation remain.","PeriodicalId":19079,"journal":{"name":"Nature Reviews Clinical Oncology","volume":null,"pages":null},"PeriodicalIF":81.1000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41571-024-00887-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A recent study reported the development and validation of the Liver Artificial Intelligence Diagnosis System (LiAIDS), a fully automated system that integrates deep learning for the diagnosis of liver lesions on the basis of contrast-enhanced CT scans and clinical information. This tool improved diagnostic precision, surpassed the accuracy of junior radiologists (and equalled that of senior radiologists) and streamlined patient triage. These advances underscore the potential of artificial intelligence to enhance hepatology care, although challenges to widespread clinical implementation remain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于深度学习的系统提高肝脏病变分析的诊断精度:机遇与挑战。
最近的一项研究报告了肝脏人工智能诊断系统(LiAIDS)的开发和验证,这是一个全自动系统,集成了深度学习功能,可根据对比增强 CT 扫描和临床信息诊断肝脏病变。该工具提高了诊断精确度,超过了初级放射科医生的准确度(与高级放射科医生相当),并简化了病人分流。这些进展凸显了人工智能在加强肝病治疗方面的潜力,尽管广泛临床应用仍面临挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
99.40
自引率
0.40%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Nature Reviews publishes clinical content authored by internationally renowned clinical academics and researchers, catering to readers in the medical sciences at postgraduate levels and beyond. Although targeted at practicing doctors, researchers, and academics within specific specialties, the aim is to ensure accessibility for readers across various medical disciplines. The journal features in-depth Reviews offering authoritative and current information, contextualizing topics within the history and development of a field. Perspectives, News & Views articles, and the Research Highlights section provide topical discussions, opinions, and filtered primary research from diverse medical journals.
期刊最新文献
Expanding the use of T-DXd in metastatic HR-positive breast cancer: where are we now? On the cusp of targeted therapy for cancer cachexia — what clinical benefits might we promise our patients? Navigating the changing landscape of BTK-targeted therapies for B cell lymphomas and chronic lymphocytic leukaemia Author Correction: The high costs of anticancer therapies in the USA: challenges, opportunities and progress Cadonilimab is effective and safe in recurrent cervical cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1