Hybrid Unsupervised Learning Strategy for Monitoring Industrial Batch Processes

Christian W. Frey
{"title":"Hybrid Unsupervised Learning Strategy for Monitoring Industrial Batch Processes","authors":"Christian W. Frey","doi":"arxiv-2403.13032","DOIUrl":null,"url":null,"abstract":"Industrial production processes, especially in the pharmaceutical industry,\nare complex systems that require continuous monitoring to ensure efficiency,\nproduct quality, and safety. This paper presents a hybrid unsupervised learning\nstrategy (HULS) for monitoring complex industrial processes. Addressing the\nlimitations of traditional Self-Organizing Maps (SOMs), especially in scenarios\nwith unbalanced data sets and highly correlated process variables, HULS\ncombines existing unsupervised learning techniques to address these challenges.\nTo evaluate the performance of the HULS concept, comparative experiments are\nperformed based on a laboratory batch","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.13032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Industrial production processes, especially in the pharmaceutical industry, are complex systems that require continuous monitoring to ensure efficiency, product quality, and safety. This paper presents a hybrid unsupervised learning strategy (HULS) for monitoring complex industrial processes. Addressing the limitations of traditional Self-Organizing Maps (SOMs), especially in scenarios with unbalanced data sets and highly correlated process variables, HULS combines existing unsupervised learning techniques to address these challenges. To evaluate the performance of the HULS concept, comparative experiments are performed based on a laboratory batch
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于监控工业批量生产过程的混合无监督学习策略
工业生产过程,尤其是制药业的生产过程是一个复杂的系统,需要持续监控以确保效率、产品质量和安全。本文提出了一种用于监控复杂工业流程的混合无监督学习策略(HULS)。为了解决传统自组织图(SOM)的局限性,尤其是在数据集不平衡和过程变量高度相关的情况下,HULS 结合了现有的无监督学习技术来应对这些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human-Variability-Respecting Optimal Control for Physical Human-Machine Interaction A Valuation Framework for Customers Impacted by Extreme Temperature-Related Outages On the constrained feedback linearization control based on the MILP representation of a ReLU-ANN Motion Planning under Uncertainty: Integrating Learning-Based Multi-Modal Predictors into Branch Model Predictive Control Managing Renewable Energy Resources Using Equity-Market Risk Tools - the Efficient Frontiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1