Adaptive Reconstruction of Nonlinear Systems States via DREM with Perturbation Annihilation

Anton Glushchenko, Konstantin Lastochkin
{"title":"Adaptive Reconstruction of Nonlinear Systems States via DREM with Perturbation Annihilation","authors":"Anton Glushchenko, Konstantin Lastochkin","doi":"arxiv-2403.13664","DOIUrl":null,"url":null,"abstract":"A new adaptive observer is proposed for a certain class of nonlinear systems\nwith bounded unknown input and parametric uncertainty. Unlike most existing\nsolutions, the proposed approach ensures asymptotic convergence of the unknown\nparameters, state and perturbation estimates to an arbitrarily small\nneighborhood of the equilibrium point. The solution is based on the novel\naugmentation of a high-gain observer with the dynamic regressor extension and\nmixing (DREM) procedure enhanced with a perturbation annihilation algorithm.\nThe aforementioned properties of the proposed solution are verified via\nnumerical experiments.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"9 48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.13664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new adaptive observer is proposed for a certain class of nonlinear systems with bounded unknown input and parametric uncertainty. Unlike most existing solutions, the proposed approach ensures asymptotic convergence of the unknown parameters, state and perturbation estimates to an arbitrarily small neighborhood of the equilibrium point. The solution is based on the novel augmentation of a high-gain observer with the dynamic regressor extension and mixing (DREM) procedure enhanced with a perturbation annihilation algorithm. The aforementioned properties of the proposed solution are verified via numerical experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过具有扰动湮没功能的 DREM 自适应重构非线性系统状态
针对某类具有有界未知输入和参数不确定性的非线性系统,提出了一种新的自适应观测器。与大多数现有解决方案不同,所提出的方法可确保未知参数、状态和扰动估计值渐进收敛到平衡点的任意小邻域。该解决方案基于高增益观测器与动态回归器扩展和混合(DREM)程序的新扩展,并使用扰动湮灭算法进行了增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human-Variability-Respecting Optimal Control for Physical Human-Machine Interaction A Valuation Framework for Customers Impacted by Extreme Temperature-Related Outages On the constrained feedback linearization control based on the MILP representation of a ReLU-ANN Motion Planning under Uncertainty: Integrating Learning-Based Multi-Modal Predictors into Branch Model Predictive Control Managing Renewable Energy Resources Using Equity-Market Risk Tools - the Efficient Frontiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1