Sébastien Farkas, Antoine Heranval, Olivier Lopez, Maud Thomas
{"title":"Generalized pareto regression trees for extreme event analysis","authors":"Sébastien Farkas, Antoine Heranval, Olivier Lopez, Maud Thomas","doi":"10.1007/s10687-024-00485-1","DOIUrl":null,"url":null,"abstract":"<p>This paper derives finite sample results to assess the consistency of Generalized Pareto regression trees introduced by Farkas et al. (Insur. Math. Econ. 98:92–105, 2021) as tools to perform extreme value regression for heavy-tailed distributions. This procedure allows the constitution of classes of observations with similar tail behaviors depending on the value of the covariates, based on a recursive partition of the sample and simple model selection rules. The results we provide are obtained from concentration inequalities, and are valid for a finite sample size. A misspecification bias that arises from the use of a “Peaks over Threshold” approach is also taken into account. Moreover, the derived properties legitimate the pruning strategies, that is the model selection rules, used to select a proper tree that achieves a compromise between simplicity and goodness-of-fit. The methodology is illustrated through a simulation study, and a real data application in insurance for natural disasters.</p>","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"16 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10687-024-00485-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper derives finite sample results to assess the consistency of Generalized Pareto regression trees introduced by Farkas et al. (Insur. Math. Econ. 98:92–105, 2021) as tools to perform extreme value regression for heavy-tailed distributions. This procedure allows the constitution of classes of observations with similar tail behaviors depending on the value of the covariates, based on a recursive partition of the sample and simple model selection rules. The results we provide are obtained from concentration inequalities, and are valid for a finite sample size. A misspecification bias that arises from the use of a “Peaks over Threshold” approach is also taken into account. Moreover, the derived properties legitimate the pruning strategies, that is the model selection rules, used to select a proper tree that achieves a compromise between simplicity and goodness-of-fit. The methodology is illustrated through a simulation study, and a real data application in insurance for natural disasters.
ExtremesMATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.20
自引率
7.70%
发文量
15
审稿时长
>12 weeks
期刊介绍:
Extremes publishes original research on all aspects of statistical extreme value theory and its applications in science, engineering, economics and other fields. Authoritative and timely reviews of theoretical advances and of extreme value methods and problems in important applied areas, including detailed case studies, are welcome and will be a regular feature. All papers are refereed. Publication will be swift: in particular electronic submission and correspondence is encouraged.
Statistical extreme value methods encompass a very wide range of problems: Extreme waves, rainfall, and floods are of basic importance in oceanography and hydrology, as are high windspeeds and extreme temperatures in meteorology and catastrophic claims in insurance. The waveforms and extremes of random loads determine lifelengths in structural safety, corrosion and metal fatigue.