Seungwoo Kang, Kyusoon Kim, Youngwook Kwon, Seeun Park, Seoncheol Park, Ha-Young Shin, Joonpyo Kim, Hee-Seok Oh
{"title":"Semiparametric approaches for the inference of univariate and multivariate extremes","authors":"Seungwoo Kang, Kyusoon Kim, Youngwook Kwon, Seeun Park, Seoncheol Park, Ha-Young Shin, Joonpyo Kim, Hee-Seok Oh","doi":"10.1007/s10687-024-00497-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present several semiparametric approaches for the inference of univariate and multivariate extremes to resolve the tasks from the EVA (2023) Conference Data Challenge. We implement generalized additive models to capture the flexible relationship for point and interval estimations of the conditional quantiles. We also adopt <span>\\(L^{p}\\)</span>-quantile to estimate the marginal quantiles of extreme levels. To predict probabilities of multivariate extreme events, we implement conditional methods by Heffernan and Tawn (Royal J. Stat. Soc.: Ser. B (Statistical Methodology) <b>66</b>(3), 497–546, 2004) and Keef et al. (J. Multivar. Anal. <b>115</b>, 396–404, 2013). We further validate predicted models, evaluating their performance scores constructed based on the notion of an equally extreme level of quantiles and cross-validation to select the best estimates to achieve high accuracy. When estimating the excess probability of 50-dimensional data, we cluster variables with high correlation after simple data exploration and combine the results obtained from each cluster. Finally, we also provide post-mortem analysis based on the ground truth.</p>","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"32 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10687-024-00497-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present several semiparametric approaches for the inference of univariate and multivariate extremes to resolve the tasks from the EVA (2023) Conference Data Challenge. We implement generalized additive models to capture the flexible relationship for point and interval estimations of the conditional quantiles. We also adopt \(L^{p}\)-quantile to estimate the marginal quantiles of extreme levels. To predict probabilities of multivariate extreme events, we implement conditional methods by Heffernan and Tawn (Royal J. Stat. Soc.: Ser. B (Statistical Methodology) 66(3), 497–546, 2004) and Keef et al. (J. Multivar. Anal. 115, 396–404, 2013). We further validate predicted models, evaluating their performance scores constructed based on the notion of an equally extreme level of quantiles and cross-validation to select the best estimates to achieve high accuracy. When estimating the excess probability of 50-dimensional data, we cluster variables with high correlation after simple data exploration and combine the results obtained from each cluster. Finally, we also provide post-mortem analysis based on the ground truth.
ExtremesMATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.20
自引率
7.70%
发文量
15
审稿时长
>12 weeks
期刊介绍:
Extremes publishes original research on all aspects of statistical extreme value theory and its applications in science, engineering, economics and other fields. Authoritative and timely reviews of theoretical advances and of extreme value methods and problems in important applied areas, including detailed case studies, are welcome and will be a regular feature. All papers are refereed. Publication will be swift: in particular electronic submission and correspondence is encouraged.
Statistical extreme value methods encompass a very wide range of problems: Extreme waves, rainfall, and floods are of basic importance in oceanography and hydrology, as are high windspeeds and extreme temperatures in meteorology and catastrophic claims in insurance. The waveforms and extremes of random loads determine lifelengths in structural safety, corrosion and metal fatigue.