Multiobjective, trust-aware, artificial hummingbird algorithm-based secure clustering and routing with mobile sink for wireless sensor networks

IF 1.3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC ETRI Journal Pub Date : 2024-03-20 DOI:10.4218/etrij.2023-0330
Anil Kumar Jemla Naik, Manjunatha Parameswarappa, Mohan Naik Ramachandra
{"title":"Multiobjective, trust-aware, artificial hummingbird algorithm-based secure clustering and routing with mobile sink for wireless sensor networks","authors":"Anil Kumar Jemla Naik, Manjunatha Parameswarappa, Mohan Naik Ramachandra","doi":"10.4218/etrij.2023-0330","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSNs) are composed of numerous nodes distributed in geographical regions. Security and energy efficiency are challenging tasks due to an open environment and a restricted battery source. The multiobjective trust-aware artificial hummingbird algorithm (M-TAAHA) is proposed to achieve secure and reliable transmission over a WSN with a mobile sink (MS). The M-TAAHA selects secure cluster head (SCH) nodes based on trust, energy, interspace between sensors, interspace between SCH and MS, and the CH balancing factor. A secure route is found by M-TAAHA with trust, energy, and interspace between SCH and MS. The M-TAAHA avoids the malicious nodes to improve data delivery and avoid unwanted energy consumption. The M-TAAHA is analyzed using energy consumption, alive nodes, life expectancy, delay, data packets received in MS, throughput, packet delivery ratio, and packet loss ratio. Existing techniques (LEACH-TM, EATMR, FAL, Taylor-spotted hyena optimization [Taylor-SHO], TBEBR, and TEDG) are used for comparison with the M-TAAHA. Findings show that the energy consumption of the proposed M-TAAHA for 1000 rounds is 0.56 J (1.78 × smaller than that of the Taylor-SHO).","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"7 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4218/etrij.2023-0330","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless sensor networks (WSNs) are composed of numerous nodes distributed in geographical regions. Security and energy efficiency are challenging tasks due to an open environment and a restricted battery source. The multiobjective trust-aware artificial hummingbird algorithm (M-TAAHA) is proposed to achieve secure and reliable transmission over a WSN with a mobile sink (MS). The M-TAAHA selects secure cluster head (SCH) nodes based on trust, energy, interspace between sensors, interspace between SCH and MS, and the CH balancing factor. A secure route is found by M-TAAHA with trust, energy, and interspace between SCH and MS. The M-TAAHA avoids the malicious nodes to improve data delivery and avoid unwanted energy consumption. The M-TAAHA is analyzed using energy consumption, alive nodes, life expectancy, delay, data packets received in MS, throughput, packet delivery ratio, and packet loss ratio. Existing techniques (LEACH-TM, EATMR, FAL, Taylor-spotted hyena optimization [Taylor-SHO], TBEBR, and TEDG) are used for comparison with the M-TAAHA. Findings show that the energy consumption of the proposed M-TAAHA for 1000 rounds is 0.56 J (1.78 × smaller than that of the Taylor-SHO).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多目标、信任感知、人工蜂鸟算法的无线传感器网络安全聚类和路由选择(带移动汇
无线传感器网络(WSN)由分布在不同地理区域的众多节点组成。由于开放的环境和有限的电池来源,安全和能效是具有挑战性的任务。本文提出了多目标信任感知人工蜂鸟算法(M-TAAHA),以实现在有移动水槽(MS)的 WSN 上进行安全可靠的传输。M-TAAHA 根据信任度、能量、传感器之间的间隔、SCH 与 MS 之间的间隔以及 CH 平衡因子来选择安全簇头(SCH)节点。M-TAAHA 根据信任度、能量以及 SCH 和 MS 之间的间隔找到安全路由。M-TAAHA 避免了恶意节点,从而改善了数据传输并避免了不必要的能量消耗。M-TAAHA 采用能耗、存活节点、预期寿命、延迟、MS 接收到的数据包、吞吐量、数据包传送率和数据包丢失率进行分析。现有技术(LEACH-TM、EATMR、FAL、Taylor-spotted hyena optimization [Taylor-SHO]、TBEBR 和 TEDG)被用于与 M-TAAHA 进行比较。结果表明,建议的 M-TAAHA 1000 轮的能耗为 0.56 J(比 Taylor-SHO 小 1.78 倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ETRI Journal
ETRI Journal 工程技术-电信学
CiteScore
4.00
自引率
7.10%
发文量
98
审稿时长
6.9 months
期刊介绍: ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics. Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security. With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.
期刊最新文献
Issue Information Free-space quantum key distribution transmitter system using WDM filter for channel integration Metaheuristic optimization scheme for quantum kernel classifiers using entanglement-directed graphs SNN eXpress: Streamlining Low-Power AI-SoC Development With Unsigned Weight Accumulation Spiking Neural Network NEST-C: A deep learning compiler framework for heterogeneous computing systems with artificial intelligence accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1