{"title":"Multiobjective, trust-aware, artificial hummingbird algorithm-based secure clustering and routing with mobile sink for wireless sensor networks","authors":"Anil Kumar Jemla Naik, Manjunatha Parameswarappa, Mohan Naik Ramachandra","doi":"10.4218/etrij.2023-0330","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSNs) are composed of numerous nodes distributed in geographical regions. Security and energy efficiency are challenging tasks due to an open environment and a restricted battery source. The multiobjective trust-aware artificial hummingbird algorithm (M-TAAHA) is proposed to achieve secure and reliable transmission over a WSN with a mobile sink (MS). The M-TAAHA selects secure cluster head (SCH) nodes based on trust, energy, interspace between sensors, interspace between SCH and MS, and the CH balancing factor. A secure route is found by M-TAAHA with trust, energy, and interspace between SCH and MS. The M-TAAHA avoids the malicious nodes to improve data delivery and avoid unwanted energy consumption. The M-TAAHA is analyzed using energy consumption, alive nodes, life expectancy, delay, data packets received in MS, throughput, packet delivery ratio, and packet loss ratio. Existing techniques (LEACH-TM, EATMR, FAL, Taylor-spotted hyena optimization [Taylor-SHO], TBEBR, and TEDG) are used for comparison with the M-TAAHA. Findings show that the energy consumption of the proposed M-TAAHA for 1000 rounds is 0.56 J (1.78 × smaller than that of the Taylor-SHO).","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"7 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4218/etrij.2023-0330","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless sensor networks (WSNs) are composed of numerous nodes distributed in geographical regions. Security and energy efficiency are challenging tasks due to an open environment and a restricted battery source. The multiobjective trust-aware artificial hummingbird algorithm (M-TAAHA) is proposed to achieve secure and reliable transmission over a WSN with a mobile sink (MS). The M-TAAHA selects secure cluster head (SCH) nodes based on trust, energy, interspace between sensors, interspace between SCH and MS, and the CH balancing factor. A secure route is found by M-TAAHA with trust, energy, and interspace between SCH and MS. The M-TAAHA avoids the malicious nodes to improve data delivery and avoid unwanted energy consumption. The M-TAAHA is analyzed using energy consumption, alive nodes, life expectancy, delay, data packets received in MS, throughput, packet delivery ratio, and packet loss ratio. Existing techniques (LEACH-TM, EATMR, FAL, Taylor-spotted hyena optimization [Taylor-SHO], TBEBR, and TEDG) are used for comparison with the M-TAAHA. Findings show that the energy consumption of the proposed M-TAAHA for 1000 rounds is 0.56 J (1.78 × smaller than that of the Taylor-SHO).
期刊介绍:
ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics.
Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security.
With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.