{"title":"Performance evaluation of homogenization techniques for proximity losses in PCB coils applied to inductive devices","authors":"Alexis Narváez, Claudio Carretero, Jesús Acero","doi":"10.3233/jae-230184","DOIUrl":null,"url":null,"abstract":"Energy efficiency is the primary objective in optimal design of inductive power components. This goal is totally aligned with the minimization of power losses in the coils. Typically, coils have been constructed by wire winding but, more recently, the utilization of printed circuit board (PCB) constructions has become more common due to their advantages, i. e. low profile and ease of fabrication, among others. At the operating frequencies of magnetic power devices, multi-conductor cabling with litz structure is required to reduce losses. PCB loss optimization procedure involves determining the number and size of the tracks. Numerical simulation is a very powerful tool to obtain the parameters of magnetic devices. However, including the internal structure of multi-track wiring in the numerical simulation implies a very high computational cost and a low accuracy of the results, because the size of the tracks is very small. Techniques of homogenization of the cabling are used to overcome such difficulty, disregarding the internal structure in order to determine the fields in the system and their electrical equivalent by means of computational simulation. The coil losses are further determined on the basis of the characteristics of the cabling as well as of the surrounding fields. The preceding procedure has proven to be suitable for cables composed of strands of circular cross-section, but should be adjusted to apply to tracks of rectangular cross-section. In this paper, different homogenization techniques for PCB coils have been proposed and evaluated. A highly symmetric reference system is selected to reduce the computational cost of numerical modeling, but the conclusions can be applied to more complicated geometries without loss of generality. Finally, the results of the different homogenization techniques have been validated by comparison with experimental results.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230184","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Energy efficiency is the primary objective in optimal design of inductive power components. This goal is totally aligned with the minimization of power losses in the coils. Typically, coils have been constructed by wire winding but, more recently, the utilization of printed circuit board (PCB) constructions has become more common due to their advantages, i. e. low profile and ease of fabrication, among others. At the operating frequencies of magnetic power devices, multi-conductor cabling with litz structure is required to reduce losses. PCB loss optimization procedure involves determining the number and size of the tracks. Numerical simulation is a very powerful tool to obtain the parameters of magnetic devices. However, including the internal structure of multi-track wiring in the numerical simulation implies a very high computational cost and a low accuracy of the results, because the size of the tracks is very small. Techniques of homogenization of the cabling are used to overcome such difficulty, disregarding the internal structure in order to determine the fields in the system and their electrical equivalent by means of computational simulation. The coil losses are further determined on the basis of the characteristics of the cabling as well as of the surrounding fields. The preceding procedure has proven to be suitable for cables composed of strands of circular cross-section, but should be adjusted to apply to tracks of rectangular cross-section. In this paper, different homogenization techniques for PCB coils have been proposed and evaluated. A highly symmetric reference system is selected to reduce the computational cost of numerical modeling, but the conclusions can be applied to more complicated geometries without loss of generality. Finally, the results of the different homogenization techniques have been validated by comparison with experimental results.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.