{"title":"High-temperature oxidation behaviors of Co-free Cr30Fe30Ni30Al5Ti5 dual-phase multi-component alloys with multi-scale nanoprecipitates","authors":"Qingwei Gao, Yingying Wang, Jianhong Gong, Changshan Zhou, Jiyao Zhang, Xiaoming Liu, Junlei Tang, Pingping Liu, Xiangyan Chen, Dong Chen, Wenquan Lv, Konda Gokuldoss Prashanth, Kaikai Song","doi":"10.1016/j.mtadv.2024.100482","DOIUrl":null,"url":null,"abstract":"In the context of the growing research interest in multi-component alloys (MAs) and their exceptional performance under extreme environments, the high-temperature oxidation resistance and applications of MAs have attracted significant attention in the field of metallic materials. While the cost-effective and mechanical properties of Co-free MAs are of great importance, their oxidation resistance remains insufficiently understood. In this work, we designed multiple heterogeneous structures within a cast dual-phase CrFeNiAlTi MA by tailoring the Al and Ti ratio, which consists of body-centered-cubic (BCC) grains reinforced by multi-scale nanoprecipitates (i.e., L2, B2, and phase) and an L1-strengthened face-centered cubic (FCC) skeleton. Isothermal oxidation experiments at 800 °C, 1000 °C, and 1200 °C with varying exposure durations were conducted. The oxidation kinetics at 800 °C and 1000 °C followed a parabolic law, while both low weight increment and oxidation rate confirm remarkable oxidation resistance. At 800 °C, the oxides mainly consist of CrO and AlO, while are dominated by (TiO + CrO) and the mixed oxides of AlO, TiO and TiO above 1000 °C. Importantly, the inability to form a continuous AlO oxide scale at higher temperatures led to a deterioration in oxidation resistance. These findings offer valuable insights into underlying mechanisms contributing to oxidation resistance for Co-free MAs.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"142 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2024.100482","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of the growing research interest in multi-component alloys (MAs) and their exceptional performance under extreme environments, the high-temperature oxidation resistance and applications of MAs have attracted significant attention in the field of metallic materials. While the cost-effective and mechanical properties of Co-free MAs are of great importance, their oxidation resistance remains insufficiently understood. In this work, we designed multiple heterogeneous structures within a cast dual-phase CrFeNiAlTi MA by tailoring the Al and Ti ratio, which consists of body-centered-cubic (BCC) grains reinforced by multi-scale nanoprecipitates (i.e., L2, B2, and phase) and an L1-strengthened face-centered cubic (FCC) skeleton. Isothermal oxidation experiments at 800 °C, 1000 °C, and 1200 °C with varying exposure durations were conducted. The oxidation kinetics at 800 °C and 1000 °C followed a parabolic law, while both low weight increment and oxidation rate confirm remarkable oxidation resistance. At 800 °C, the oxides mainly consist of CrO and AlO, while are dominated by (TiO + CrO) and the mixed oxides of AlO, TiO and TiO above 1000 °C. Importantly, the inability to form a continuous AlO oxide scale at higher temperatures led to a deterioration in oxidation resistance. These findings offer valuable insights into underlying mechanisms contributing to oxidation resistance for Co-free MAs.
期刊介绍:
Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.