Averaged Deep Denoisers for Image Regularization

IF 1.3 4区 数学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Mathematical Imaging and Vision Pub Date : 2024-03-24 DOI:10.1007/s10851-024-01181-2
{"title":"Averaged Deep Denoisers for Image Regularization","authors":"","doi":"10.1007/s10851-024-01181-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Plug-and-Play (PnP) and Regularization-by-Denoising (RED) are recent paradigms for image reconstruction that leverage the power of modern denoisers for image regularization. In particular, they have been shown to deliver state-of-the-art reconstructions with CNN denoisers. Since the regularization is performed in an ad-hoc manner, understanding the convergence of PnP and RED has been an active research area. It was shown in recent works that iterate convergence can be guaranteed if the denoiser is averaged or nonexpansive. However, integrating nonexpansivity with gradient-based learning is challenging, the core issue being that testing nonexpansivity is intractable. Using numerical examples, we show that existing CNN denoisers tend to violate the nonexpansive property, which can cause PnP or RED to diverge. In fact, algorithms for training nonexpansive denoisers either cannot guarantee nonexpansivity or are computationally intensive. In this work, we construct contractive and averaged image denoisers by unfolding splitting-based optimization algorithms applied to wavelet denoising and demonstrate that their regularization capacity for PnP and RED can be matched with CNN denoisers. To our knowledge, this is the first work to propose a simple framework for training contractive denoisers using network unfolding. </p>","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Imaging and Vision","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10851-024-01181-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Plug-and-Play (PnP) and Regularization-by-Denoising (RED) are recent paradigms for image reconstruction that leverage the power of modern denoisers for image regularization. In particular, they have been shown to deliver state-of-the-art reconstructions with CNN denoisers. Since the regularization is performed in an ad-hoc manner, understanding the convergence of PnP and RED has been an active research area. It was shown in recent works that iterate convergence can be guaranteed if the denoiser is averaged or nonexpansive. However, integrating nonexpansivity with gradient-based learning is challenging, the core issue being that testing nonexpansivity is intractable. Using numerical examples, we show that existing CNN denoisers tend to violate the nonexpansive property, which can cause PnP or RED to diverge. In fact, algorithms for training nonexpansive denoisers either cannot guarantee nonexpansivity or are computationally intensive. In this work, we construct contractive and averaged image denoisers by unfolding splitting-based optimization algorithms applied to wavelet denoising and demonstrate that their regularization capacity for PnP and RED can be matched with CNN denoisers. To our knowledge, this is the first work to propose a simple framework for training contractive denoisers using network unfolding.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于图像正规化的平均深度去噪器
摘要 即插即用(PnP)和去噪正则化(RED)是最近的图像重建范例,它们利用现代去噪器的强大功能进行图像正则化。特别是,它们已被证明能利用 CNN 去噪器实现最先进的重建。由于正则化是以临时方式进行的,因此了解 PnP 和 RED 的收敛性一直是一个活跃的研究领域。最近的研究表明,如果去噪器是平均的或非膨胀的,则可以保证迭代收敛。然而,将非膨胀性与基于梯度的学习结合起来具有挑战性,其核心问题是非膨胀性测试难以进行。我们利用数值示例表明,现有的 CNN 去噪器往往会违反非膨胀性特性,从而导致 PnP 或 RED 发散。事实上,训练非膨胀去噪器的算法要么不能保证非膨胀性,要么计算量很大。在这项工作中,我们通过应用于小波去噪的基于分裂的展开优化算法,构建了收缩和平均图像去噪器,并证明其对 PnP 和 RED 的正则化能力可与 CNN 去噪器相媲美。据我们所知,这是首次提出利用网络展开训练收缩去噪器的简单框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mathematical Imaging and Vision
Journal of Mathematical Imaging and Vision 工程技术-计算机:人工智能
CiteScore
4.30
自引率
5.00%
发文量
70
审稿时长
3.3 months
期刊介绍: The Journal of Mathematical Imaging and Vision is a technical journal publishing important new developments in mathematical imaging. The journal publishes research articles, invited papers, and expository articles. Current developments in new image processing hardware, the advent of multisensor data fusion, and rapid advances in vision research have led to an explosive growth in the interdisciplinary field of imaging science. This growth has resulted in the development of highly sophisticated mathematical models and theories. The journal emphasizes the role of mathematics as a rigorous basis for imaging science. This provides a sound alternative to present journals in this area. Contributions are judged on the basis of mathematical content. Articles may be physically speculative but need to be mathematically sound. Emphasis is placed on innovative or established mathematical techniques applied to vision and imaging problems in a novel way, as well as new developments and problems in mathematics arising from these applications. The scope of the journal includes: computational models of vision; imaging algebra and mathematical morphology mathematical methods in reconstruction, compactification, and coding filter theory probabilistic, statistical, geometric, topological, and fractal techniques and models in imaging science inverse optics wave theory. Specific application areas of interest include, but are not limited to: all aspects of image formation and representation medical, biological, industrial, geophysical, astronomical and military imaging image analysis and image understanding parallel and distributed computing computer vision architecture design.
期刊最新文献
Mathematical Morphology on Directional Data Mixing Support Detection-Based Alternating Direction Method of Multipliers for Sparse Hyperspectral Image Unmixing Inferring Object Boundaries and Their Roughness with Uncertainty Quantification A Graph Multi-separator Problem for Image Segmentation Parallelly Sliced Optimal Transport on Spheres and on the Rotation Group
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1