Rong Wang, Gang Liu, Yu-Qin Sun, Yu-Gao Wang, Jun Shen, Yan-Xia Niu
{"title":"Insight into Relationship between the Products Distribution and Molecular Properties in Carboxylation between Benzene Polycarboxylic Acids and CO2","authors":"Rong Wang, Gang Liu, Yu-Qin Sun, Yu-Gao Wang, Jun Shen, Yan-Xia Niu","doi":"10.1134/S0965544124010018","DOIUrl":null,"url":null,"abstract":"<p>CO<sub>2</sub> is an important carbon resource, which could be chemically utilized by carboxylation. In this paper, the carboxylation between benzene polycarboxylic acids (BPCAs) and CO<sub>2</sub> was conducted using Cs<sub>2</sub>CO<sub>3</sub> as a catalyst. The relationship between the product distribution and Mulliken charge at the reaction site of BPCAs was explored by combining experiments and quantum chemical calculations of molecular properties in the reaction of carboxylation between BPCAs and CO<sub>2</sub>. The negative Mulliken charge was found to facilitate carboxylation at the reaction site of BPCAs. Hydrogen abstraction was the rate-determining step for carboxylation, and its energy barrier was calculated for different C–H in the BPCA molecule. The results showed that the C–H bond with the more negative Mulliken charge was more easily deprotonated, which further verified the above conclusion. The study provides a convenient approach to predict a product distribution for carboxylation between BPCAs and CO<sub>2</sub> according to the Mulliken charge of BPCAs.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"64 6","pages":"717 - 727"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0965544124010018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
CO2 is an important carbon resource, which could be chemically utilized by carboxylation. In this paper, the carboxylation between benzene polycarboxylic acids (BPCAs) and CO2 was conducted using Cs2CO3 as a catalyst. The relationship between the product distribution and Mulliken charge at the reaction site of BPCAs was explored by combining experiments and quantum chemical calculations of molecular properties in the reaction of carboxylation between BPCAs and CO2. The negative Mulliken charge was found to facilitate carboxylation at the reaction site of BPCAs. Hydrogen abstraction was the rate-determining step for carboxylation, and its energy barrier was calculated for different C–H in the BPCA molecule. The results showed that the C–H bond with the more negative Mulliken charge was more easily deprotonated, which further verified the above conclusion. The study provides a convenient approach to predict a product distribution for carboxylation between BPCAs and CO2 according to the Mulliken charge of BPCAs.
期刊介绍:
Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas.
Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.