Andrés Baietto, Andrés Hirigoyen, Jorge Hernández, Amabelia del Pino
{"title":"Litterfall production modeling based on climatic variables and nutrient return from stands of Eucalyptus grandis Hill ex Maiden and Pinus taeda L.","authors":"Andrés Baietto, Andrés Hirigoyen, Jorge Hernández, Amabelia del Pino","doi":"10.1007/s11676-024-01706-w","DOIUrl":null,"url":null,"abstract":"<p>Native grasslands in the Pampas of South America are increasingly being replaced by <i>Eucalyptus</i> and <i>Pinus</i> stands. The short rotation regimes used for the stands require high nutrient levels, with litterfall being a major source of nutrient return. To model the litterfall production using climatic variables and assess the nutrient return in 14-year-old <i>Eucalyptus</i> <i>grandis</i> and <i>Pinus</i> <i>taeda</i> stands, we measured litter production over 2 years, using conical litter traps, and monitored climatic variables. Mean temperature, accumulated precipitation, and mean maximum vapor pressure deficit at the seasonal level influenced litterfall production by <i>E.</i> <i>grandis</i>; seasonal accumulated precipitation and mean maximum temperature affected litterfall by <i>P.</i> <i>taeda</i>. The regression tree modeling based on these climatic variables had great accuracy and predictive power for <i>E.</i> <i>grandis</i> (<i>N</i> = 33; MAE (mean absolute error) = 0.65; RMSE (root mean square error) = 0.91; <i>R</i><sup>2</sup> = 0.71) and <i>P.</i> <i>taeda</i> (<i>N</i> = 108; MAE = 1.50; RMSE = 1.59; <i>R</i><sup>2</sup> = 0.72). The nutrient return followed a similar pattern to litterfall deposition, as well as the order of importance of macronutrients (<i>E.</i> <i>grandis</i>: Ca > N > K > Mg > P; <i>P.</i> <i>taeda</i>: N > Ca > K > Mg > P) and micronutrients (<i>E.</i> <i>grandis</i> and <i>P.</i> <i>taeda</i>: Mn > Fe > Zn > Cu) in both species. This study constitutes a first approximation of factors that affect litterfall and nutrient return in these systems.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"136 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forestry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11676-024-01706-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Native grasslands in the Pampas of South America are increasingly being replaced by Eucalyptus and Pinus stands. The short rotation regimes used for the stands require high nutrient levels, with litterfall being a major source of nutrient return. To model the litterfall production using climatic variables and assess the nutrient return in 14-year-old Eucalyptusgrandis and Pinustaeda stands, we measured litter production over 2 years, using conical litter traps, and monitored climatic variables. Mean temperature, accumulated precipitation, and mean maximum vapor pressure deficit at the seasonal level influenced litterfall production by E.grandis; seasonal accumulated precipitation and mean maximum temperature affected litterfall by P.taeda. The regression tree modeling based on these climatic variables had great accuracy and predictive power for E.grandis (N = 33; MAE (mean absolute error) = 0.65; RMSE (root mean square error) = 0.91; R2 = 0.71) and P.taeda (N = 108; MAE = 1.50; RMSE = 1.59; R2 = 0.72). The nutrient return followed a similar pattern to litterfall deposition, as well as the order of importance of macronutrients (E.grandis: Ca > N > K > Mg > P; P.taeda: N > Ca > K > Mg > P) and micronutrients (E.grandis and P.taeda: Mn > Fe > Zn > Cu) in both species. This study constitutes a first approximation of factors that affect litterfall and nutrient return in these systems.
期刊介绍:
The Journal of Forestry Research (JFR), founded in 1990, is a peer-reviewed quarterly journal in English. JFR has rapidly emerged as an international journal published by Northeast Forestry University and Ecological Society of China in collaboration with Springer Verlag. The journal publishes scientific articles related to forestry for a broad range of international scientists, forest managers and practitioners.The scope of the journal covers the following five thematic categories and 20 subjects:
Basic Science of Forestry,
Forest biometrics,
Forest soils,
Forest hydrology,
Tree physiology,
Forest biomass, carbon, and bioenergy,
Forest biotechnology and molecular biology,
Forest Ecology,
Forest ecology,
Forest ecological services,
Restoration ecology,
Forest adaptation to climate change,
Wildlife ecology and management,
Silviculture and Forest Management,
Forest genetics and tree breeding,
Silviculture,
Forest RS, GIS, and modeling,
Forest management,
Forest Protection,
Forest entomology and pathology,
Forest fire,
Forest resources conservation,
Forest health monitoring and assessment,
Wood Science and Technology,
Wood Science and Technology.