{"title":"Synthesis, characterization and evaluation of a pH-responsive molecular imprinted polymer for Matrine as an intelligent drug delivery system","authors":"Yanhui Ge, Liuyang Ding, Yubo Liu, Xiong Li","doi":"10.1515/epoly-2023-0184","DOIUrl":null,"url":null,"abstract":"To address the undesirable reactions associated with matrine (MAT) injection in clinical settings, a high-loading drug delivery system (DDS) based on pH-sensitive molecularly imprinted polymer (MAT@MIPs) was prepared for the first time. The imprinted materials containing recognition sites for the matrine were formed by using carboxyl-functionalized multiwalled carbon nanotubes as a supportive matrix and dopamine as a cross-linker due to its exceptional biocompatibility. Subsequently, the optimal reaction conditions and adsorption performance of MAT@MIPs were systematically investigated. The obtained polymers were characterized and evaluated by Fourier transform infrared spectrometry, scanning electron microscopy, elemental analysis, and thermogravimetric analysis. Results indicated that the MIPs demonstrated a favorable imprinting factor (2.36) and a high binding capacity (21.48 mg·g<jats:sup>−1</jats:sup>) for matrine. <jats:italic>In vitro</jats:italic> studies, we performed cell counting kit-8 assays in HepG2 cells, then the drug delivery capabilities of MAT-loaded MIPs were validated through light microscopy analyses, and the matrine content in culture medium was quantified using ultra high-performance liquid chromatography-mass spectrum synchronously. The facile fabrication of MAT@MIPs presents a viable solution for designing high-loading and pH-responsive DDS, which can offer a novel administration approach for drugs requiring injection in clinical applications.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"20 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0184","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
To address the undesirable reactions associated with matrine (MAT) injection in clinical settings, a high-loading drug delivery system (DDS) based on pH-sensitive molecularly imprinted polymer (MAT@MIPs) was prepared for the first time. The imprinted materials containing recognition sites for the matrine were formed by using carboxyl-functionalized multiwalled carbon nanotubes as a supportive matrix and dopamine as a cross-linker due to its exceptional biocompatibility. Subsequently, the optimal reaction conditions and adsorption performance of MAT@MIPs were systematically investigated. The obtained polymers were characterized and evaluated by Fourier transform infrared spectrometry, scanning electron microscopy, elemental analysis, and thermogravimetric analysis. Results indicated that the MIPs demonstrated a favorable imprinting factor (2.36) and a high binding capacity (21.48 mg·g−1) for matrine. In vitro studies, we performed cell counting kit-8 assays in HepG2 cells, then the drug delivery capabilities of MAT-loaded MIPs were validated through light microscopy analyses, and the matrine content in culture medium was quantified using ultra high-performance liquid chromatography-mass spectrum synchronously. The facile fabrication of MAT@MIPs presents a viable solution for designing high-loading and pH-responsive DDS, which can offer a novel administration approach for drugs requiring injection in clinical applications.
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.