Zhanerke Zakirova, Bekbolat Tashev, Claude Deutsch
{"title":"Correlated ion stopping in dense plasmas with a temperature-dependent plasmon pole approximation","authors":"Zhanerke Zakirova, Bekbolat Tashev, Claude Deutsch","doi":"10.1002/ctpp.202300159","DOIUrl":null,"url":null,"abstract":"<p>The plasmon pole approximation used for the stopping function in a dense electron plasma is given a temperature-dependent cutoff wavenumber via the ion projectile thermal wavelength. Excepted for projectile inter-ion distance smaller than the target electron screening length and small ion fragment velocities, featuring a attosecond interaction time with a maximum correlated ion stopping (CIS) in inertial confinement fusion and warm dense matter (WDM), the given procedure is shown to yield back accurately the CIS estimated within the standard random phase approximation framework at any temperature, provided the ion fragment distribution is taken Gaussian.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202300159","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctpp.202300159","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
The plasmon pole approximation used for the stopping function in a dense electron plasma is given a temperature-dependent cutoff wavenumber via the ion projectile thermal wavelength. Excepted for projectile inter-ion distance smaller than the target electron screening length and small ion fragment velocities, featuring a attosecond interaction time with a maximum correlated ion stopping (CIS) in inertial confinement fusion and warm dense matter (WDM), the given procedure is shown to yield back accurately the CIS estimated within the standard random phase approximation framework at any temperature, provided the ion fragment distribution is taken Gaussian.