首页 > 最新文献

Contributions to Plasma Physics最新文献

英文 中文
Issue Information: Contrib. Plasma Phys. 10/2025 发行信息:投稿。《等离子体物理学》10/2025
IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-11-21 DOI: 10.1002/ctpp.202590020
{"title":"Issue Information: Contrib. Plasma Phys. 10/2025","authors":"","doi":"10.1002/ctpp.202590020","DOIUrl":"https://doi.org/10.1002/ctpp.202590020","url":null,"abstract":"","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 10","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202590020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145555726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Contrib. Plasma Phys. 10/2025 封面图片:投稿。《等离子体物理学》10/2025
IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-11-21 DOI: 10.1002/ctpp.202590019

Flowchart of the neural network-based electric field reconstruction process, including (a) creating the conceptual experiment setup, (b) importing the electric field profile from the simulation, (c) generating the corresponding pit distribution using test particle simulations, (d) generating training data and training the neural network model, and (e) reconstructing the electric field profile. Fig. 5 of the paper by A. Mizuta et al. https://doi.org/10.1002/ctpp.70019

基于神经网络的电场重建过程流程图,包括(a)创建概念实验设置,(b)从模拟中导入电场剖面,(c)使用测试粒子模拟生成相应的坑分布,(d)生成训练数据并训练神经网络模型,(e)重建电场剖面。A. Mizuta等人的论文图5 https://doi.org/10.1002/ctpp.70019
{"title":"Cover Picture: Contrib. Plasma Phys. 10/2025","authors":"","doi":"10.1002/ctpp.202590019","DOIUrl":"https://doi.org/10.1002/ctpp.202590019","url":null,"abstract":"<p>Flowchart of the neural network-based electric field reconstruction process, including (a) creating the conceptual experiment setup, (b) importing the electric field profile from the simulation, (c) generating the corresponding pit distribution using test particle simulations, (d) generating training data and training the neural network model, and (e) reconstructing the electric field profile. Fig. 5 of the paper by A. Mizuta et al. https://doi.org/10.1002/ctpp.70019\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 10","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202590019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145555727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Contrib. Plasma Phys. 08/2025 封面图片:投稿。等离子体物理。08/2025
IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-11-03 DOI: 10.1002/ctpp.202590015

The temperature-density domain of interest illustrating the approximate region of warm dense matter (WDM) (orange region) and the conditions found within several astrophysical objects. The upper mass density scale refers to the hydrogen plasma considered. The lines of constant coupling parameters (purple) delineate the transition between the weakly and strongly coupled regimes. Similarly, the black line marks the points where the thermal energy is equal to the Fermi energy, indicating the relevance of quantum degeneracy effects. Fig. 1 of the paper by Samuel Schumacher et al. https://doi.org/10.1002/ctpp.70002

感兴趣的温度-密度域说明了热致密物质(WDM)的近似区域(橙色区域)和在几个天体物理对象中发现的条件。上面的质量密度是指考虑的氢等离子体。恒定耦合参数线(紫色)描绘了弱耦合和强耦合状态之间的过渡。同样,黑线标记了热能等于费米能量的点,表明量子简并效应的相关性。图1 Samuel Schumacher等人的论文https://doi.org/10.1002/ctpp.70002
{"title":"Cover Picture: Contrib. Plasma Phys. 08/2025","authors":"","doi":"10.1002/ctpp.202590015","DOIUrl":"https://doi.org/10.1002/ctpp.202590015","url":null,"abstract":"<p>The temperature-density domain of interest illustrating the approximate region of warm dense matter (WDM) (orange region) and the conditions found within several astrophysical objects. The upper mass density scale refers to the hydrogen plasma considered. The lines of constant coupling parameters (purple) delineate the transition between the weakly and strongly coupled regimes. Similarly, the black line marks the points where the thermal energy is equal to the Fermi energy, indicating the relevance of quantum degeneracy effects. Fig. 1 of the paper by Samuel Schumacher et al. https://doi.org/10.1002/ctpp.70002\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 8-9","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202590015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145426101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Contrib. Plasma Phys. 08/2025 发行信息:投稿。等离子体物理。08/2025
IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-11-03 DOI: 10.1002/ctpp.202590016
{"title":"Issue Information: Contrib. Plasma Phys. 08/2025","authors":"","doi":"10.1002/ctpp.202590016","DOIUrl":"https://doi.org/10.1002/ctpp.202590016","url":null,"abstract":"","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 8-9","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202590016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145426102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison Between Induced Compton Scattering Experiments and Particle-In-Cell Simulation 诱导康普顿散射实验与细胞内粒子模拟的比较
IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-07-15 DOI: 10.1002/ctpp.70029
Kiyochika Kuramoto, Shuta J. Tanaka, Tzu-Yao Huang, M. Sofyan Habibi, Nur Khasanah, Shih-Hung Chen, Hsu-Hsin Chu, Jyhpyng Wang, Chih-Hao Pai, Yao-Li Liu, Chun-Sung Jao, Michel Koenig, Kentaro Sakai, Toseo Moritaka, Youichi Sakawa, Yuji Fukuda, Yasuhiro Kuramitsu

Induced Compton scattering (CS) is a quantum nonlinear interaction between an intense electromagnetic field and a rarefied plasma. Although the induced CS is expected to occur in radiation fields with high brightness temperatures such as pulsars in nature, the principle of induced CS has not been proven experimentally. Therefore, we conducted a proof-of-principle experiment of induced CS using an ultra-intense laser. We measured the scattered spectra due to the interaction between the ultra-intense laser and plasma. The observed spectrum shows a nonlinear redshift, which can be explained by induced CS. We also performed particle-in-cell simulations, in which induced CS is not included, and found that the experimental results are not explained by classical plasma physics.

感应康普顿散射(CS)是强电磁场与稀薄等离子体之间的量子非线性相互作用。虽然在脉冲星等具有高亮度温度的辐射场中预计会发生诱导CS,但诱导CS的原理尚未得到实验证明。因此,我们利用超强激光进行了诱导CS的原理验证实验。我们测量了由于超强激光与等离子体相互作用而产生的散射光谱。观测到的光谱显示出非线性红移,这可以用诱导CS来解释。我们还进行了不包括诱导CS的细胞内粒子模拟,发现实验结果不能用经典等离子体物理学来解释。
{"title":"Comparison Between Induced Compton Scattering Experiments and Particle-In-Cell Simulation","authors":"Kiyochika Kuramoto,&nbsp;Shuta J. Tanaka,&nbsp;Tzu-Yao Huang,&nbsp;M. Sofyan Habibi,&nbsp;Nur Khasanah,&nbsp;Shih-Hung Chen,&nbsp;Hsu-Hsin Chu,&nbsp;Jyhpyng Wang,&nbsp;Chih-Hao Pai,&nbsp;Yao-Li Liu,&nbsp;Chun-Sung Jao,&nbsp;Michel Koenig,&nbsp;Kentaro Sakai,&nbsp;Toseo Moritaka,&nbsp;Youichi Sakawa,&nbsp;Yuji Fukuda,&nbsp;Yasuhiro Kuramitsu","doi":"10.1002/ctpp.70029","DOIUrl":"https://doi.org/10.1002/ctpp.70029","url":null,"abstract":"<div>\u0000 \u0000 <p>Induced Compton scattering (CS) is a quantum nonlinear interaction between an intense electromagnetic field and a rarefied plasma. Although the induced CS is expected to occur in radiation fields with high brightness temperatures such as pulsars in nature, the principle of induced CS has not been proven experimentally. Therefore, we conducted a proof-of-principle experiment of induced CS using an ultra-intense laser. We measured the scattered spectra due to the interaction between the ultra-intense laser and plasma. The observed spectrum shows a nonlinear redshift, which can be explained by induced CS. We also performed particle-in-cell simulations, in which induced CS is not included, and found that the experimental results are not explained by classical plasma physics.</p>\u0000 </div>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 10","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145555688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Peculiarities of Nanomaterials Synthesis in DC Glow Discharge Plasma 直流辉光放电等离子体合成纳米材料的特性研究
IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-07-11 DOI: 10.1002/ctpp.70039
Utegenov Almasbek, Yerlanuly Yerassyl, Ongaibergenov Zhanserik, Orazbayev Sagi, Abdrakhmanov Azamat, Ramazanov Tlekkabul

This study investigates the synthesis of carbon nanoparticles in DC glow discharge plasma using acetylene as a precursor. Characterization of the deposited nanoparticles showed clear differences between the anode and cathode surfaces, with the anode having a more amorphous, oxidized structure and the cathode containing more crystalline, graphitic carbon, as confirmed by Raman and XPS analyses. These differences in surface composition were related to the plasma conditions and the role of electric fields in nanoparticle deposition. In addition, electron temperature measurements showed a transient increase after acetylene injection, followed by stabilization as nanoparticle agglomeration reduced the particle density in the plasma. Taken together, the results highlight the interconnectedness of the processes governing nanoparticle synthesis and provide insight into the influence of plasma dynamics on nanoparticle formation and properties.

研究了以乙炔为前驱体,在直流辉光放电等离子体中合成纳米碳的方法。Raman和XPS分析证实,沉积的纳米颗粒在阳极和阴极表面之间存在明显的差异,阳极具有更多的非晶氧化结构,阴极含有更多的结晶石墨碳。这些表面组成的差异与等离子体条件和电场在纳米颗粒沉积中的作用有关。此外,电子温度测量结果显示,在注入乙炔后,电子温度出现了短暂的升高,随后随着纳米粒子聚集降低等离子体中的粒子密度而趋于稳定。综上所述,这些结果突出了控制纳米颗粒合成过程的相互联系,并为等离子体动力学对纳米颗粒形成和性质的影响提供了见解。
{"title":"On the Peculiarities of Nanomaterials Synthesis in DC Glow Discharge Plasma","authors":"Utegenov Almasbek,&nbsp;Yerlanuly Yerassyl,&nbsp;Ongaibergenov Zhanserik,&nbsp;Orazbayev Sagi,&nbsp;Abdrakhmanov Azamat,&nbsp;Ramazanov Tlekkabul","doi":"10.1002/ctpp.70039","DOIUrl":"https://doi.org/10.1002/ctpp.70039","url":null,"abstract":"<div>\u0000 \u0000 <p>This study investigates the synthesis of carbon nanoparticles in DC glow discharge plasma using acetylene as a precursor. Characterization of the deposited nanoparticles showed clear differences between the anode and cathode surfaces, with the anode having a more amorphous, oxidized structure and the cathode containing more crystalline, graphitic carbon, as confirmed by Raman and XPS analyses. These differences in surface composition were related to the plasma conditions and the role of electric fields in nanoparticle deposition. In addition, electron temperature measurements showed a transient increase after acetylene injection, followed by stabilization as nanoparticle agglomeration reduced the particle density in the plasma. Taken together, the results highlight the interconnectedness of the processes governing nanoparticle synthesis and provide insight into the influence of plasma dynamics on nanoparticle formation and properties.</p>\u0000 </div>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 8-9","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145426153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Ion Core on Structural and Thermodynamic Properties of Dense Plasma 离子核对致密等离子体结构和热力学性质的影响
IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-07-11 DOI: 10.1002/ctpp.70034
T. N. Ismagambetova, M. M. Muratov, M. T. Gabdullin, T. S. Ramazanov

In this paper, dense plasma is studied using the pseudopotential approach to account for the effect of the bound electrons on the electron-ion potential shape near the ion core. The impact of the ion core effect on the structural and thermodynamic properties of dense plasmas is investigated taking into account both shielding effects and exchange-correlation screening. The effects of electronic exchange and correlation are considered by using the static local field correction in the long-wavelength limit. The ion core significantly affects the radial distribution functions and thermodynamic properties at a considered range of plasma parameters, including non-isothermal plasma conditions. The radial distribution functions indicate strong electron clustering for a smaller minimum depth due to stronger screening, while larger steepness of the core edge shifts the peaks to shorter distances, while for the same cases the non-ideality corrections increase.

本文用赝势方法研究了致密等离子体中束缚电子对离子核附近电子-离子势形状的影响。考虑屏蔽效应和交换相关筛选,研究了离子核效应对致密等离子体结构和热力学性质的影响。在长波长范围内,利用静态局域场校正考虑了电子交换和相关的影响。在等离子体参数范围内,包括非等温等离子体条件下,离子核显著影响径向分布函数和热力学性质。径向分布函数表明,由于屏蔽作用较强,最小深度越小,电子聚类越强,而核心边缘的陡度越大,峰向更短的距离移动,而在相同的情况下,非理想性修正增加。
{"title":"Influence of Ion Core on Structural and Thermodynamic Properties of Dense Plasma","authors":"T. N. Ismagambetova,&nbsp;M. M. Muratov,&nbsp;M. T. Gabdullin,&nbsp;T. S. Ramazanov","doi":"10.1002/ctpp.70034","DOIUrl":"https://doi.org/10.1002/ctpp.70034","url":null,"abstract":"<div>\u0000 \u0000 <p>In this paper, dense plasma is studied using the pseudopotential approach to account for the effect of the bound electrons on the electron-ion potential shape near the ion core. The impact of the ion core effect on the structural and thermodynamic properties of dense plasmas is investigated taking into account both shielding effects and exchange-correlation screening. The effects of electronic exchange and correlation are considered by using the static local field correction in the long-wavelength limit. The ion core significantly affects the radial distribution functions and thermodynamic properties at a considered range of plasma parameters, including non-isothermal plasma conditions. The radial distribution functions indicate strong electron clustering for a smaller minimum depth due to stronger screening, while larger steepness of the core edge shifts the peaks to shorter distances, while for the same cases the non-ideality corrections increase.</p>\u0000 </div>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 8-9","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145426246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Contrib. Plasma Phys. 06/2025 封面图片:投稿。等离子体物理。6/2025
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-07-08 DOI: 10.1002/ctpp.202590011

3D plots of ion density, temperature and polytropic coefficient for a fixed potential ϕ = 0.5. Fig. 10 of the paper by Majid Khan et al. https://doi.org/10.1002/ctpp.70010

固定电位φ = 0.5时离子密度、温度和多向系数的三维图。Majid Khan等人的论文图10 https://doi.org/10.1002/ctpp.70010
{"title":"Cover Picture: Contrib. Plasma Phys. 06/2025","authors":"","doi":"10.1002/ctpp.202590011","DOIUrl":"https://doi.org/10.1002/ctpp.202590011","url":null,"abstract":"<p>3D plots of ion density, temperature and polytropic coefficient for a fixed potential <i>ϕ</i> = 0.5. Fig. 10 of the paper by Majid Khan et al. https://doi.org/10.1002/ctpp.70010\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 6","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202590011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144574156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Contrib. Plasma Phys. 06/2025 发行信息:投稿。等离子体物理。6/2025
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-07-08 DOI: 10.1002/ctpp.202590012
{"title":"Issue Information: Contrib. Plasma Phys. 06/2025","authors":"","doi":"10.1002/ctpp.202590012","DOIUrl":"https://doi.org/10.1002/ctpp.202590012","url":null,"abstract":"","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 6","pages":""},"PeriodicalIF":1.3,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202590012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144574157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting the Uniform Electron Gas Stopping Power at Moderate and Strong Coupling 中强耦合下均匀电子阻气功率的预测
IF 1.5 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2025-07-02 DOI: 10.1002/ctpp.70026
Saule A. Syzganbayeva, Alexey V. Filinov, Jesús Ara, Assel B. Ashikbayeva, Abdiadil Askaruly, Lazzat T. Yerimbetova, Manuel D. Barriga-Carrasco, Yuriy V. Arkhipov, Igor M. Tkachenko

This paper presents a detailed study of the stopping power of a homogeneous electron gas in moderate and strong coupling regimes using the self-consistent version of the method of moments as the key theoretical approach capable of expressing the dynamic characteristics of the system in terms of the static ones, which are the moments. We develop a robust framework that relies on nine sum rules and other exact relationships to analyze electron–electron interactions and their impact on energy loss processes. We derive an expression for the stopping power that takes into account both quantum statistical effects and electron correlation phenomena. Our results demonstrate significant deviations from classical stopping power predictions, especially under the strong coupling conditions, where electron dynamics are highly dependent on the collective behavior. This work not only advances the theoretical understanding of the homogeneous electron gas but also has implications for practical applications in fields such as plasma physics and materials science.

本文采用矩量法的自洽版本作为关键的理论方法,详细研究了均质电子气体在中等和强耦合状态下的停止能力,该方法能够用静态特性(即矩量)来表达系统的动态特性。我们开发了一个强大的框架,它依赖于九和规则和其他精确的关系来分析电子-电子相互作用及其对能量损失过程的影响。我们推导了一个同时考虑量子统计效应和电子相关现象的停止功率表达式。我们的结果显示了与经典停止功率预测的显著偏差,特别是在强耦合条件下,电子动力学高度依赖于集体行为。这项工作不仅推进了对均相电子气体的理论认识,而且对等离子体物理和材料科学等领域的实际应用也具有重要意义。
{"title":"Predicting the Uniform Electron Gas Stopping Power at Moderate and Strong Coupling","authors":"Saule A. Syzganbayeva,&nbsp;Alexey V. Filinov,&nbsp;Jesús Ara,&nbsp;Assel B. Ashikbayeva,&nbsp;Abdiadil Askaruly,&nbsp;Lazzat T. Yerimbetova,&nbsp;Manuel D. Barriga-Carrasco,&nbsp;Yuriy V. Arkhipov,&nbsp;Igor M. Tkachenko","doi":"10.1002/ctpp.70026","DOIUrl":"https://doi.org/10.1002/ctpp.70026","url":null,"abstract":"<p>This paper presents a detailed study of the stopping power of a homogeneous electron gas in moderate and strong coupling regimes using the self-consistent version of the method of moments as the key theoretical approach capable of expressing the dynamic characteristics of the system in terms of the static ones, which are the moments. We develop a robust framework that relies on nine sum rules and other exact relationships to analyze electron–electron interactions and their impact on energy loss processes. We derive an expression for the stopping power that takes into account both quantum statistical effects and electron correlation phenomena. Our results demonstrate significant deviations from classical stopping power predictions, especially under the strong coupling conditions, where electron dynamics are highly dependent on the collective behavior. This work not only advances the theoretical understanding of the homogeneous electron gas but also has implications for practical applications in fields such as plasma physics and materials science.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 8-9","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.70026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145426142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Contributions to Plasma Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1