{"title":"Adaptive location method for film cooling holes based on the design intent of the turbine blade","authors":"","doi":"10.1007/s00170-024-13456-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Due to the inevitable deviation of the casting process, the dimensional error of the turbine blade is introduced. As a result, the location datum of the film cooling holes is changed, which has an impact on the machining accuracy. The majority of pertinent studies concentrate on the rigid location approach for the entire blade, which results in a modest relative position error of the blade surface but still fails to give the exact position and axial direction of the film cooling holes of the deformed blade. In this paper, the entire deformation of the blade cross-section curve is divided into a number of deformation combinations of the mean line curve based on the construction method of the blade design intent. The exact location of the film cooling holes in the turbine blade with deviation is therefore efficiently solved by a flexible deformation of the blade that optimises the position and axial direction of the holes. The verification demonstrates that the novel method can significantly reduce both the contour deviation of the blade surface and the location issue of the film cooling holes. After machining experiments, the maximum position deviation of the holes is reduced by approximately 80% compared to the rigid location method of the entire blade, and the average value and standard deviation are also decreased by about 70%.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00170-024-13456-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the inevitable deviation of the casting process, the dimensional error of the turbine blade is introduced. As a result, the location datum of the film cooling holes is changed, which has an impact on the machining accuracy. The majority of pertinent studies concentrate on the rigid location approach for the entire blade, which results in a modest relative position error of the blade surface but still fails to give the exact position and axial direction of the film cooling holes of the deformed blade. In this paper, the entire deformation of the blade cross-section curve is divided into a number of deformation combinations of the mean line curve based on the construction method of the blade design intent. The exact location of the film cooling holes in the turbine blade with deviation is therefore efficiently solved by a flexible deformation of the blade that optimises the position and axial direction of the holes. The verification demonstrates that the novel method can significantly reduce both the contour deviation of the blade surface and the location issue of the film cooling holes. After machining experiments, the maximum position deviation of the holes is reduced by approximately 80% compared to the rigid location method of the entire blade, and the average value and standard deviation are also decreased by about 70%.
期刊介绍:
The International Journal of Advanced Manufacturing Technology bridges the gap between pure research journals and the more practical publications on advanced manufacturing and systems. It therefore provides an outstanding forum for papers covering applications-based research topics relevant to manufacturing processes, machines and process integration.