Alexander Oleff, Benjamin Küster, Ludger Overmeyer
{"title":"Determination of quality classes for material extrusion additive manufacturing using image processing","authors":"Alexander Oleff, Benjamin Küster, Ludger Overmeyer","doi":"10.1007/s00170-024-13269-5","DOIUrl":null,"url":null,"abstract":"<p>Tools for implementing a systematic quality management are necessary for the use of material extrusion as an additive manufacturing process for products with high quality requirements. Well-defined quality classes are crucial for ensuring that the requirements for a product can be communicated transparently and that the existing properties can be evaluated. Furthermore, there is a lack of capable measurement equipment for the acquisition of process data during the production process. To address these challenges, the present paper introduces an image processing system that determines quality indicators for individual layers in terms of imperfect surface percentages and the number of imperfections. The central element of the hardware is an adaptive darkfield illumination, which leads to high-contrast images. In addition, five types of layer subareas are identified in a segmentation step. Unsupervised machine learning methods are then used to detect imperfections in each layer subarea. In the segmentation, the current layer can be distinguished from irrelevant image background regions with an F-measure of 0.981. For the layer-wise measurement of the quality indicators, relative measurement errors with standard deviations of 25 to 76.1% are found. After evaluating the capabilities of the image processing system, a proposal for limits of quality classes is derived by monitoring several material extrusion processes. For this purpose, three quality classes for each of the five layer subareas are deduced from the process scatter measured by the image processing system. The results are an important contribution to the industrialization of material extrusion in safety–critical areas such as medical technology or the aerospace industry.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"16 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00170-024-13269-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Tools for implementing a systematic quality management are necessary for the use of material extrusion as an additive manufacturing process for products with high quality requirements. Well-defined quality classes are crucial for ensuring that the requirements for a product can be communicated transparently and that the existing properties can be evaluated. Furthermore, there is a lack of capable measurement equipment for the acquisition of process data during the production process. To address these challenges, the present paper introduces an image processing system that determines quality indicators for individual layers in terms of imperfect surface percentages and the number of imperfections. The central element of the hardware is an adaptive darkfield illumination, which leads to high-contrast images. In addition, five types of layer subareas are identified in a segmentation step. Unsupervised machine learning methods are then used to detect imperfections in each layer subarea. In the segmentation, the current layer can be distinguished from irrelevant image background regions with an F-measure of 0.981. For the layer-wise measurement of the quality indicators, relative measurement errors with standard deviations of 25 to 76.1% are found. After evaluating the capabilities of the image processing system, a proposal for limits of quality classes is derived by monitoring several material extrusion processes. For this purpose, three quality classes for each of the five layer subareas are deduced from the process scatter measured by the image processing system. The results are an important contribution to the industrialization of material extrusion in safety–critical areas such as medical technology or the aerospace industry.
期刊介绍:
The International Journal of Advanced Manufacturing Technology bridges the gap between pure research journals and the more practical publications on advanced manufacturing and systems. It therefore provides an outstanding forum for papers covering applications-based research topics relevant to manufacturing processes, machines and process integration.