L-Leucine Propyl Ester–Fatty Acid-Based Pseudo-Protic Ionic Liquids: Synthesis, Extraction Ability, and Ecotoxicity Prediction by Machine Learning

Ainul MAGHFIRAH, Adroit T.N. FAJAR, Rie WAKABAYASHI, Masahiro GOTO
{"title":"L-Leucine Propyl Ester–Fatty Acid-Based Pseudo-Protic Ionic Liquids: Synthesis, Extraction Ability, and Ecotoxicity Prediction by Machine Learning","authors":"Ainul MAGHFIRAH, Adroit T.N. FAJAR, Rie WAKABAYASHI, Masahiro GOTO","doi":"10.15261/serdj.31.31","DOIUrl":null,"url":null,"abstract":"</p><p>We synthesized low-toxicity L-leucine propyl ester linoleate and L-leucine propyl ester oleate pseudo-protic ionic liquids (ILs) for benign extraction of Ni(II), Co(II), and Mn(II). The extraction ability order for both ILs was Ni(II) &gt; Co(II) &gt; Mn(II). In addition, we developed a machine learning model with an eXtreme Gradient Boosting regressor algorithm to evaluate and predict the ecotoxicity level of the ILs. An evaluation of the proposed regression model by cross-validation indicates that the model is reliable, with an R<sup>2</sup> value of 0.71. The prediction results indicate that the newly synthesized ILs are much less toxic than a commercially available IL (methyltrioctylammonium chloride) that is often used for metal extraction. </p>\n<p></p>","PeriodicalId":21785,"journal":{"name":"Solvent Extraction Research and Development-japan","volume":"155 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solvent Extraction Research and Development-japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15261/serdj.31.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We synthesized low-toxicity L-leucine propyl ester linoleate and L-leucine propyl ester oleate pseudo-protic ionic liquids (ILs) for benign extraction of Ni(II), Co(II), and Mn(II). The extraction ability order for both ILs was Ni(II) > Co(II) > Mn(II). In addition, we developed a machine learning model with an eXtreme Gradient Boosting regressor algorithm to evaluate and predict the ecotoxicity level of the ILs. An evaluation of the proposed regression model by cross-validation indicates that the model is reliable, with an R2 value of 0.71. The prediction results indicate that the newly synthesized ILs are much less toxic than a commercially available IL (methyltrioctylammonium chloride) that is often used for metal extraction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 L-亮氨酸丙酯-脂肪酸的伪原生离子液体:通过机器学习预测合成、萃取能力和生态毒性
我们合成了低毒性的L-亮氨酸丙酯亚油酸盐和L-亮氨酸丙酯油酸盐伪原生离子液体(ILs),用于良性萃取Ni(II)、Co(II)和Mn(II)。两种离子液体的萃取能力顺序为 Ni(II) > Co(II) > Mn(II) 。此外,我们还利用梯度提升回归算法建立了一个机器学习模型,用于评估和预测惰性离子的生态毒性水平。通过交叉验证对所提出的回归模型进行的评估表明,该模型是可靠的,其 R2 值为 0.71。预测结果表明,新合成的惰性离子的毒性远低于市售的惰性离子(甲基三辛基氯化铵),后者常用于金属萃取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Removal Efficiency and Kinetics of Fe3+ from Phosphoric Medium by Solvent Extraction Separation of Lactic Acid and Acetic Acid through Supported Ionic Liquid Membranes Containing Cyphos IL 101 Extraction of Gold Nanoparticles Based on Temperature-Dependent Phase Separation using Zwitterionic 3-(Nonyldimethylammonio)-propyl Sulfate Extraction of Lithium from Simulated Brine with a High Mg/Li Ratio Using NaNTf2· TBP System A Comparative Study of Extraction of Selenium(IV) Using Various Organic Solvents in Hydrochloric Acid Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1