{"title":"Accelerated first-order methods for a class of semidefinite programs","authors":"Alex L. Wang, Fatma Kılınç-Karzan","doi":"10.1007/s10107-024-02073-4","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a new storage-optimal first-order method, CertSDP, for solving a special class of semidefinite programs (SDPs) to high accuracy. The class of SDPs that we consider, the <i>exact QMP-like SDPs</i>, is characterized by low-rank solutions, <i>a priori</i> knowledge of the restriction of the SDP solution to a small subspace, and standard regularity assumptions such as strict complementarity. Crucially, we show how to use a <i>certificate of strict complementarity</i> to construct a low-dimensional strongly convex minimax problem whose optimizer coincides with a factorization of the SDP optimizer. From an algorithmic standpoint, we show how to construct the necessary certificate and how to solve the minimax problem efficiently. Our algorithms for strongly convex minimax problems with inexact prox maps may be of independent interest. We accompany our theoretical results with preliminary numerical experiments suggesting that CertSDP significantly outperforms current state-of-the-art methods on large sparse exact QMP-like SDPs.\n</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"31 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02073-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a new storage-optimal first-order method, CertSDP, for solving a special class of semidefinite programs (SDPs) to high accuracy. The class of SDPs that we consider, the exact QMP-like SDPs, is characterized by low-rank solutions, a priori knowledge of the restriction of the SDP solution to a small subspace, and standard regularity assumptions such as strict complementarity. Crucially, we show how to use a certificate of strict complementarity to construct a low-dimensional strongly convex minimax problem whose optimizer coincides with a factorization of the SDP optimizer. From an algorithmic standpoint, we show how to construct the necessary certificate and how to solve the minimax problem efficiently. Our algorithms for strongly convex minimax problems with inexact prox maps may be of independent interest. We accompany our theoretical results with preliminary numerical experiments suggesting that CertSDP significantly outperforms current state-of-the-art methods on large sparse exact QMP-like SDPs.
期刊介绍:
Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.