Study on design of conical arc side-edge milling cutter and cutting performance under ultrasonic-assisted condition

IF 2.9 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Advanced Manufacturing Technology Pub Date : 2024-03-21 DOI:10.1007/s00170-024-13423-z
Guangyue Wang, Wenyuan Xu, Chunhui Li, Jiaming Liu, Tao Chen
{"title":"Study on design of conical arc side-edge milling cutter and cutting performance under ultrasonic-assisted condition","authors":"Guangyue Wang, Wenyuan Xu, Chunhui Li, Jiaming Liu, Tao Chen","doi":"10.1007/s00170-024-13423-z","DOIUrl":null,"url":null,"abstract":"<p>Ball-end milling cutters are commonly used in the finishing processes of curved-side milling for titanium alloys; however, several issues arise during machining, such as poor cutting conditions at the bottom of the end teeth, low cutting speeds, and limited chip space. Given the above issues, the research on the design and manufacture of conical arc side-edge milling cutter for titanium alloy processing was carried out in this paper; the mathematical model of the vital structure of conical arc side-edge milling cutter was established; the grinding trajectory equations of tool front and flank were deduced; the tool-workpiece kinematics of ultrasonic vibration applied to conical arc side edge was studied; and the comparative experimental study of the conical arc side-edge milling cutter cutting titanium alloy with and without ultrasonic vibration was carried out. The experiment results indicate that in comparison to conventional milling techniques, ultrasonic vibration cutting significantly decreases cutting force, plastic deformation of the chip, and wear rate of the flank face. The tool wear band is both longer and more uniform, bonding phenomena in titanium alloys are distinctly reduced, and tool performance is improved.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"162 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00170-024-13423-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Ball-end milling cutters are commonly used in the finishing processes of curved-side milling for titanium alloys; however, several issues arise during machining, such as poor cutting conditions at the bottom of the end teeth, low cutting speeds, and limited chip space. Given the above issues, the research on the design and manufacture of conical arc side-edge milling cutter for titanium alloy processing was carried out in this paper; the mathematical model of the vital structure of conical arc side-edge milling cutter was established; the grinding trajectory equations of tool front and flank were deduced; the tool-workpiece kinematics of ultrasonic vibration applied to conical arc side edge was studied; and the comparative experimental study of the conical arc side-edge milling cutter cutting titanium alloy with and without ultrasonic vibration was carried out. The experiment results indicate that in comparison to conventional milling techniques, ultrasonic vibration cutting significantly decreases cutting force, plastic deformation of the chip, and wear rate of the flank face. The tool wear band is both longer and more uniform, bonding phenomena in titanium alloys are distinctly reduced, and tool performance is improved.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锥形圆弧侧刃铣刀的设计及超声波辅助条件下的切削性能研究
球头铣刀通常用于钛合金曲面铣削的精加工工序,但在加工过程中会出现端齿底部切削条件差、切削速度低、切屑空间有限等问题。针对上述问题,本文开展了钛合金加工用锥形圆弧侧刃铣刀的设计与制造研究,建立了锥形圆弧侧刃铣刀的重要结构数学模型,推导了刀具正面和侧面的磨削轨迹方程,研究了锥形圆弧侧刃施加超声波振动时刀具与工件的运动学特性,并对锥形圆弧侧刃铣刀切削钛合金时施加超声波振动与不施加超声波振动进行了对比实验研究。实验结果表明,与传统铣削技术相比,超声波振动切削可显著降低切削力、切屑塑性变形和侧刃磨损率。刀具磨损带更长、更均匀,钛合金中的粘结现象明显减少,刀具性能得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
17.60%
发文量
2008
审稿时长
62 days
期刊介绍: The International Journal of Advanced Manufacturing Technology bridges the gap between pure research journals and the more practical publications on advanced manufacturing and systems. It therefore provides an outstanding forum for papers covering applications-based research topics relevant to manufacturing processes, machines and process integration.
期刊最新文献
Pure niobium manufactured by Laser-Based Powder Bed Fusion: influence of process parameters and supports on as-built surface quality On a simulation-based chatter prediction system by integrating relative entropy and dynamic cutting force Modeling of the motorized spindle temperature field considering the thermos-mechanical coupling on constant pressure preloaded bearings Multi-layer solid-state ultrasonic additive manufacturing of aluminum/copper: local properties and texture Material-structure-process-performance integrated optimization method of steel/aluminum self-piercing riveted joint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1