Diffusion of Collisional Plasma by the Example of a High-Current Arc in He: Binary and Trinary Ionized Mixtures

IF 1 4区 物理与天体物理 Q4 PHYSICS, APPLIED High Temperature Pub Date : 2024-03-21 DOI:10.1134/s0018151x23050085
O. V. Korshunov, D. I. Kavyrshin, V. F. Chinnov
{"title":"Diffusion of Collisional Plasma by the Example of a High-Current Arc in He: Binary and Trinary Ionized Mixtures","authors":"O. V. Korshunov, D. I. Kavyrshin, V. F. Chinnov","doi":"10.1134/s0018151x23050085","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this study the applicability of the binary mixture model utilizing the first-order gas-kinetic Chapman–Enskog theory is substantiated for describing diffusion processes at different degrees of ionization of a single-temperature simple gas plasma consisting of three components: atoms, ions and electrons. On the same bases, the obtained expressions for a trinary mixture are applicable to a plasma with a fourth component that is difficult to ionize. The thermal diffusion relations of a trinary mixture are derived, whose peculiarity is the electronic component, which does not affect the diffusion flows of atoms and ions. It is shown that in a highly ionized He arc plasma with developed diffusion and ionization nonequilibrium, thermal diffusion is insignificant. It is noted that when thermodynamic equilibrium is violated, the diffusion coefficients may not change at all or decrease by half at most.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"31 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0018151x23050085","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study the applicability of the binary mixture model utilizing the first-order gas-kinetic Chapman–Enskog theory is substantiated for describing diffusion processes at different degrees of ionization of a single-temperature simple gas plasma consisting of three components: atoms, ions and electrons. On the same bases, the obtained expressions for a trinary mixture are applicable to a plasma with a fourth component that is difficult to ionize. The thermal diffusion relations of a trinary mixture are derived, whose peculiarity is the electronic component, which does not affect the diffusion flows of atoms and ions. It is shown that in a highly ionized He arc plasma with developed diffusion and ionization nonequilibrium, thermal diffusion is insignificant. It is noted that when thermodynamic equilibrium is violated, the diffusion coefficients may not change at all or decrease by half at most.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以 He 中的大电流电弧为例研究碰撞等离子体的扩散:二元和三元电离混合物
摘要 在本研究中,利用一阶气体动力查普曼-恩斯科格理论的二元混合物模型的适用性得到了证实,该模型可用于描述由原子、离子和电子三种成分组成的单温简单气体等离子体在不同电离程度下的扩散过程。在同样的基础上,所获得的三元混合物表达式也适用于含有难以电离的第四种成分的等离子体。推导出了三元混合物的热扩散关系,其特点是电子成分不影响原子和离子的扩散流。结果表明,在高度电离的 He 电弧等离子体中,扩散和电离非均衡都很发达,热扩散微不足道。值得注意的是,当热力学平衡被打破时,扩散系数可能完全不变或最多减少一半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
High Temperature
High Temperature 物理-物理:应用
CiteScore
1.50
自引率
40.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: High Temperature is an international peer reviewed journal that publishes original papers and reviews written by theoretical and experimental researchers. The journal deals with properties and processes in low-temperature plasma; thermophysical properties of substances including pure materials, mixtures and alloys; the properties in the vicinity of the critical point, equations of state; phase equilibrium; heat and mass transfer phenomena, in particular, by forced and free convections; processes of boiling and condensation, radiation, and complex heat transfer; experimental methods and apparatuses; high-temperature facilities for power engineering applications, etc. The journal reflects the current trends in thermophysical research. It presents the results of present-day experimental and theoretical studies in the processes of complex heat transfer, thermal, gas dynamic processes, and processes of heat and mass transfer, as well as the latest advances in the theoretical description of the properties of high-temperature media.
期刊最新文献
Numerical Method For Solving the Inverse Problem of Nonisothermal Filtration in Double-Porosity Media Direct Measurement of Zirconium Melting Line up to 4 kbar by Isobaric Pulse Heating Method New Correlation Model of Thermal Conductivity of Liquid Hydrofluorochloro Derivatives of Olefins, Hydrofluorocarbons, and Hydrochlorofluorocarbons Generation of the Second Optical Harmonic under the Action of Narrowband Terahertz Pulses in the Antiferromagnet NiO Determination of the Density of the Earth’s Core Based on the Equations of State of Iron and Titanium at High Pressures and Temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1