{"title":"Mechanical and corrosion properties of highly porous Ta-Nb-Sn alloy for intervertebral disc in spinal applications","authors":"Berk Atay, Ilven Mutlu","doi":"10.2478/msp-2023-0048","DOIUrl":null,"url":null,"abstract":"In this study, low Young’s modulus, highly porous Ta-Nb-Sn alloy foam was manufactured by using the space holder method. The aim of this study is development of an alloy with high wear resistance, with Young’s modulus, with good imaging (MRI, CT) properties, and with high bioactivity. Ta alloy foam can be used in spinal applications (intervertebral disc) or dental applications. The space holder method enables the manufacturing of open-cell foam with a low elastic modulus. Powder mixtures were prepared through mechanical alloying. Carbamide was used to form pores. Ta has suitable strength, ductility, corrosion resistance, and biocompatibility. Ta has high price, however, and a high melting temperature, high activity, and high density. Nb addition lowered the melting temperature, elastic modulus, and cost of using Ta. The sinterability of Ta was enhanced by Sn addition. The corrosion behaviour of Ta alloy was examined. Young’s modulus was determined by compression and ultrasonic tests. Tomography and radiography tests were also used.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"31 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-Poland","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/msp-2023-0048","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, low Young’s modulus, highly porous Ta-Nb-Sn alloy foam was manufactured by using the space holder method. The aim of this study is development of an alloy with high wear resistance, with Young’s modulus, with good imaging (MRI, CT) properties, and with high bioactivity. Ta alloy foam can be used in spinal applications (intervertebral disc) or dental applications. The space holder method enables the manufacturing of open-cell foam with a low elastic modulus. Powder mixtures were prepared through mechanical alloying. Carbamide was used to form pores. Ta has suitable strength, ductility, corrosion resistance, and biocompatibility. Ta has high price, however, and a high melting temperature, high activity, and high density. Nb addition lowered the melting temperature, elastic modulus, and cost of using Ta. The sinterability of Ta was enhanced by Sn addition. The corrosion behaviour of Ta alloy was examined. Young’s modulus was determined by compression and ultrasonic tests. Tomography and radiography tests were also used.
本研究采用空间支架法制造了低杨氏模量、高多孔性的 Ta-Nb-Sn 合金泡沫。这项研究的目的是开发一种具有高耐磨性、高杨氏模量、良好的成像(MRI、CT)性能和高生物活性的合金。Ta 合金泡沫可用于脊柱应用(椎间盘)或牙科应用。空间夹持法可以制造弹性模量较低的开孔泡沫。粉末混合物是通过机械合金化方法制备的。碳酰胺用于形成孔隙。Ta 具有合适的强度、延展性、耐腐蚀性和生物相容性。然而,Ta 价格昂贵,熔化温度高,活性高,密度大。添加 Nb 可降低 Ta 的熔化温度、弹性模量和使用成本。添加 Sn 后,Ta 的烧结性得到增强。对 Ta 合金的腐蚀行为进行了研究。通过压缩和超声波测试确定了杨氏模量。还使用了断层扫描和射线照相测试。
期刊介绍:
Material Sciences-Poland is an interdisciplinary journal devoted to experimental research into results on the relationships between structure, processing, properties, technology, and uses of materials. Original research articles and review can be only submitted.