Pulsed excitation of a quantum oscillator: A model accounting for damping

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Open Physics Pub Date : 2024-03-21 DOI:10.1515/phys-2023-0208
Valeriy Astapenko, Timur Bergaliyev, Sergey Sakhno
{"title":"Pulsed excitation of a quantum oscillator: A model accounting for damping","authors":"Valeriy Astapenko, Timur Bergaliyev, Sergey Sakhno","doi":"10.1515/phys-2023-0208","DOIUrl":null,"url":null,"abstract":"This article proposes a model that accounts for damping of a quantum oscillator (QO) during pulsed excitation. Our model is based on the Schwinger formula, which calculates oscillator’s excitation probability through the energy of an associated classical damped oscillator. We utilize this model to describe the influence of damping on temporal and spectral dependences of QO excitation, induced by electromagnetic pulses with exponential and double exponential envelopes. The oscillator excitation is analyzed in terms of transition probability between stationary states after pulse termination. Here, we present an analytical description of these dependences, along with numerical results. Specifically, we derive analytical expressions that depict the saturation effect during pulsed excitation, taking into account the damping of a QO. The evolution of the temporal dependence of the excitation probability with a change in the damping constant is numerically traced. We demonstrate that the number of maxima in this dependence is determined by the values of pulse parameters and the damping constant.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2023-0208","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a model that accounts for damping of a quantum oscillator (QO) during pulsed excitation. Our model is based on the Schwinger formula, which calculates oscillator’s excitation probability through the energy of an associated classical damped oscillator. We utilize this model to describe the influence of damping on temporal and spectral dependences of QO excitation, induced by electromagnetic pulses with exponential and double exponential envelopes. The oscillator excitation is analyzed in terms of transition probability between stationary states after pulse termination. Here, we present an analytical description of these dependences, along with numerical results. Specifically, we derive analytical expressions that depict the saturation effect during pulsed excitation, taking into account the damping of a QO. The evolution of the temporal dependence of the excitation probability with a change in the damping constant is numerically traced. We demonstrate that the number of maxima in this dependence is determined by the values of pulse parameters and the damping constant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子振荡器的脉冲激励:考虑阻尼的模型
本文提出了一个模型,用于解释脉冲激发过程中量子振荡器(QO)的阻尼。我们的模型基于施温格公式,该公式通过相关经典阻尼振荡器的能量计算振荡器的激发概率。我们利用这一模型来描述阻尼对 QO 激发的时间和频谱依赖性的影响,这种激发是由具有指数和双指数包络的电磁脉冲引起的。振荡器激励是根据脉冲终止后静止状态之间的转换概率来分析的。在此,我们对这些相关性进行了分析描述,并给出了数值结果。具体来说,考虑到 QO 的阻尼,我们得出了描述脉冲激励期间饱和效应的分析表达式。我们用数值方法追踪了激发概率随阻尼常数变化而产生的时间依赖性演变。我们证明了这种依赖性的最大值数量是由脉冲参数值和阻尼常数决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Physics
Open Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
3.20
自引率
5.30%
发文量
82
审稿时长
18 weeks
期刊介绍: Open Physics is a peer-reviewed, open access, electronic journal devoted to the publication of fundamental research results in all fields of physics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
期刊最新文献
Effectiveness of microwave ablation using two simultaneous antennas for liver malignancy treatment Analysis of a generalized proportional fractional stochastic differential equation incorporating Carathéodory's approximation and applications Improving heat transfer efficiency via optimization and sensitivity assessment in hybrid nanofluid flow with variable magnetism using the Yamada–Ota model Thermosolutal Marangoni convective flow of MHD tangent hyperbolic hybrid nanofluids with elastic deformation and heat source Study on dynamic and static tensile and puncture-resistant mechanical properties of impregnated STF multi-dimensional structure Kevlar fiber reinforced composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1