Nikola Bošković, Branislav Radjenović, Srdjan Nikolić, Marija Radmilović-Radjenović
{"title":"Effectiveness of microwave ablation using two simultaneous antennas for liver malignancy treatment","authors":"Nikola Bošković, Branislav Radjenović, Srdjan Nikolić, Marija Radmilović-Radjenović","doi":"10.1515/phys-2024-0079","DOIUrl":null,"url":null,"abstract":"Microwave ablation is becoming an increasingly important minimally invasive procedure that uses dielectric hysteresis to generate heat and destroy cancer cells. Tissue damage depends on the input power, procedure duration, and antenna position. Therefore, one of the essential problems is determining parameters that ensure the destruction of the tumor with the desired margins and minimal damage to the healthy tissue. In addition to experimental methods, computer modeling has been proven to be an effective approach for improving the performance of microwave ablation (MWA). Moreover, since the thermal spread in biological tissue is difficult to measure, the development of a predictive model from procedural planning to execution may have a great impact on patient care. This study focuses on determining the optimal parameters for MWA treatment of liver tumors using two identical parallel-positioned multi-slot coaxial antennas. The simulation results suggest that an input power of 20 W or 15 W per antenna suffices for complete tumor ablation with a sufficient safety margin for 600 and 900 s, respectively. In both cases, the created ablation zones were similar. The ablation zones for 15 W per antenna were more spherical, invading a smaller amount of healthy tissue than those for 20 W per antenna. This study may represent a step forward in planning MWA treatment for individual patients.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2024-0079","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Microwave ablation is becoming an increasingly important minimally invasive procedure that uses dielectric hysteresis to generate heat and destroy cancer cells. Tissue damage depends on the input power, procedure duration, and antenna position. Therefore, one of the essential problems is determining parameters that ensure the destruction of the tumor with the desired margins and minimal damage to the healthy tissue. In addition to experimental methods, computer modeling has been proven to be an effective approach for improving the performance of microwave ablation (MWA). Moreover, since the thermal spread in biological tissue is difficult to measure, the development of a predictive model from procedural planning to execution may have a great impact on patient care. This study focuses on determining the optimal parameters for MWA treatment of liver tumors using two identical parallel-positioned multi-slot coaxial antennas. The simulation results suggest that an input power of 20 W or 15 W per antenna suffices for complete tumor ablation with a sufficient safety margin for 600 and 900 s, respectively. In both cases, the created ablation zones were similar. The ablation zones for 15 W per antenna were more spherical, invading a smaller amount of healthy tissue than those for 20 W per antenna. This study may represent a step forward in planning MWA treatment for individual patients.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.