Leveraging the Hankel norm approximation and data‐driven algorithms in reduced order modeling

IF 1.8 3区 数学 Q1 MATHEMATICS Numerical Linear Algebra with Applications Pub Date : 2024-03-21 DOI:10.1002/nla.2555
Annan Yu, Alex Townsend
{"title":"Leveraging the Hankel norm approximation and data‐driven algorithms in reduced order modeling","authors":"Annan Yu, Alex Townsend","doi":"10.1002/nla.2555","DOIUrl":null,"url":null,"abstract":"SummaryLarge‐scale linear time‐invariant (LTI) dynamical systems are widely used to characterize complicated physical phenomena. Glover developed the Hankel norm approximation (HNA) algorithm for optimally reducing the system in the Hankel norm, and we study its numerical issues. We provide a remedy for the numerical instabilities of Glover's HNA algorithm caused by clustered singular values. We analyze the effect of our modification on the degree and the Hankel error of the reduced system. Moreover, we propose a two‐stage framework to reduce the order of a large‐scale LTI system given samples of its transfer function for a target degree of the reduced system. It combines the adaptive Antoulas–Anderson (AAA) algorithm, modified to produce an intermediate LTI system in a numerically stable way, and the modified HNA algorithm. A carefully computed rational approximation of an adaptively chosen degree gives us an algorithm for reducing an LTI system, which achieves a balance between speed and accuracy.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2555","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

SummaryLarge‐scale linear time‐invariant (LTI) dynamical systems are widely used to characterize complicated physical phenomena. Glover developed the Hankel norm approximation (HNA) algorithm for optimally reducing the system in the Hankel norm, and we study its numerical issues. We provide a remedy for the numerical instabilities of Glover's HNA algorithm caused by clustered singular values. We analyze the effect of our modification on the degree and the Hankel error of the reduced system. Moreover, we propose a two‐stage framework to reduce the order of a large‐scale LTI system given samples of its transfer function for a target degree of the reduced system. It combines the adaptive Antoulas–Anderson (AAA) algorithm, modified to produce an intermediate LTI system in a numerically stable way, and the modified HNA algorithm. A carefully computed rational approximation of an adaptively chosen degree gives us an algorithm for reducing an LTI system, which achieves a balance between speed and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用汉克尔准则近似和数据驱动算法进行降序建模
摘要 大规模线性时不变(LTI)动力系统被广泛用于描述复杂的物理现象。Glover 开发了汉克尔规范近似(HNA)算法,用于在汉克尔规范下优化还原系统,我们对其数值问题进行了研究。我们为 Glover 的 HNA 算法因奇异值成团而导致的数值不稳定提供了一种补救方法。我们分析了我们的修改对还原系统的度和汉克尔误差的影响。此外,我们还提出了一个两阶段框架,在给定其传递函数样本的情况下,针对还原系统的目标阶数,降低大规模 LTI 系统的阶数。它结合了自适应安图拉斯-安德森(AAA)算法和改进的 HNA 算法,前者经过改进,能以数值稳定的方式生成中间 LTI 系统。通过对自适应选择的阶数进行精心计算的有理近似,我们得到了一种用于还原 LTI 系统的算法,它实现了速度与精度之间的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
期刊最新文献
A Family of Inertial Three‐Term CGPMs for Large‐Scale Nonlinear Pseudo‐Monotone Equations With Convex Constraints Signal and image reconstruction with a double parameter Hager–Zhang‐type conjugate gradient method for system of nonlinear equations Superlinear Krylov convergence under streamline diffusion FEM for convection‐dominated elliptic operators On rank‐revealing QR factorizations of quaternion matrices Probabilistic perturbation bounds of matrix decompositions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1