{"title":"Progress and challenges for replacing n-methyl-2-pyrrolidone / polyvinylidene fluoride slurry formulations in lithium-ion battery cathodes","authors":"Sung Cik Mun , Yeong Hoon Jeon , Jong Ho Won","doi":"10.1016/j.pnsc.2024.02.013","DOIUrl":null,"url":null,"abstract":"<div><p>With electric vehicles, energy storage systems, and portable electronic devices becoming increasingly popular, the demand for lithium-ion batteries has surged considerably. In the lithium-ion battery industry, n-methyl-2-pyrrolidone (NMP) is widely used as the solvent for cathode slurry, and polyvinylidene fluoride (PVDF) is used as the cathode binder. However, because of the harmful effect of NMP on the environment and human health, the use of NMP and PVDF for lithium-ion batteries will be highly regulated in the future. Therefore, developing eco-friendly alternatives is crucial for formulating systems using new solvents and binders. Despite numerous efforts, these alternatives have not been widely adopted across the lithium-ion battery industry. It is due to their limited ability to compete on price or performance to replace the traditional NMP/PVDF slurry formulations. This review investigates developments in the search for new solvents and binders that can be used in cathode slurry compositions. The new systems can potentially decrease energy consumption and manufacturing costs associated with NMP recovery, energy-intensive drying processes, and material expenses. We discuss key factors and technical challenges from earlier studies and compare them with the current, optimized formulations based on NMP and PVDF.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100200712400056X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With electric vehicles, energy storage systems, and portable electronic devices becoming increasingly popular, the demand for lithium-ion batteries has surged considerably. In the lithium-ion battery industry, n-methyl-2-pyrrolidone (NMP) is widely used as the solvent for cathode slurry, and polyvinylidene fluoride (PVDF) is used as the cathode binder. However, because of the harmful effect of NMP on the environment and human health, the use of NMP and PVDF for lithium-ion batteries will be highly regulated in the future. Therefore, developing eco-friendly alternatives is crucial for formulating systems using new solvents and binders. Despite numerous efforts, these alternatives have not been widely adopted across the lithium-ion battery industry. It is due to their limited ability to compete on price or performance to replace the traditional NMP/PVDF slurry formulations. This review investigates developments in the search for new solvents and binders that can be used in cathode slurry compositions. The new systems can potentially decrease energy consumption and manufacturing costs associated with NMP recovery, energy-intensive drying processes, and material expenses. We discuss key factors and technical challenges from earlier studies and compare them with the current, optimized formulations based on NMP and PVDF.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.