{"title":"Graph Receptive Transformer Encoder for Text Classification","authors":"Arda Can Aras;Tuna Alikaşifoğlu;Aykut Koç","doi":"10.1109/TSIPN.2024.3380362","DOIUrl":null,"url":null,"abstract":"By employing attention mechanisms, transformers have made great improvements in nearly all NLP tasks, including text classification. However, the context of the transformer's attention mechanism is limited to single sequences, and their fine-tuning stage can utilize only inductive learning. Focusing on broader contexts by representing texts as graphs, previous works have generalized transformer models to graph domains to employ attention mechanisms beyond single sequences. However, these approaches either require exhaustive pre-training stages, learn only transductively, or can learn inductively without utilizing pre-trained models. To address these problems simultaneously, we propose the Graph Receptive Transformer Encoder (GRTE), which combines graph neural networks (GNNs) with large-scale pre-trained models for text classification in both inductive and transductive fashions. By constructing heterogeneous and homogeneous graphs over given corpora and not requiring a pre-training stage, GRTE can utilize information from both large-scale pre-trained models and graph-structured relations. Our proposed method retrieves global and contextual information in documents and generates word embeddings as a by-product of inductive inference. We compared the proposed GRTE with a wide range of baseline models through comprehensive experiments. Compared to the state-of-the-art, we demonstrated that GRTE improves model performances and offers computational savings up to ˜100×.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"10 ","pages":"347-359"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10477516/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
By employing attention mechanisms, transformers have made great improvements in nearly all NLP tasks, including text classification. However, the context of the transformer's attention mechanism is limited to single sequences, and their fine-tuning stage can utilize only inductive learning. Focusing on broader contexts by representing texts as graphs, previous works have generalized transformer models to graph domains to employ attention mechanisms beyond single sequences. However, these approaches either require exhaustive pre-training stages, learn only transductively, or can learn inductively without utilizing pre-trained models. To address these problems simultaneously, we propose the Graph Receptive Transformer Encoder (GRTE), which combines graph neural networks (GNNs) with large-scale pre-trained models for text classification in both inductive and transductive fashions. By constructing heterogeneous and homogeneous graphs over given corpora and not requiring a pre-training stage, GRTE can utilize information from both large-scale pre-trained models and graph-structured relations. Our proposed method retrieves global and contextual information in documents and generates word embeddings as a by-product of inductive inference. We compared the proposed GRTE with a wide range of baseline models through comprehensive experiments. Compared to the state-of-the-art, we demonstrated that GRTE improves model performances and offers computational savings up to ˜100×.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.