CDKN2 expression is a potential biomarker for T cell exhaustion in hepatocellular carcinoma.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY BMB Reports Pub Date : 2024-06-01
Shibo Wei, Yan Zhang, Baeki E Kang, Wonyoung Park, He Guo, Seungyoon Nam, Jong-Sun Kang, Jee-Heon Jeong, Yunju Jo, Dongryeol Ryu, Yikun Jiang, Ki-Tae Ha
{"title":"CDKN2 expression is a potential biomarker for T cell exhaustion in hepatocellular carcinoma.","authors":"Shibo Wei, Yan Zhang, Baeki E Kang, Wonyoung Park, He Guo, Seungyoon Nam, Jong-Sun Kang, Jee-Heon Jeong, Yunju Jo, Dongryeol Ryu, Yikun Jiang, Ki-Tae Ha","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular Carcinoma (HCC), the predominant primary hepatic malignancy, is the prime contributor to mortality. Despite the availability of multiple surgical interventions, patient outcomes remain suboptimal. Immunotherapies have emerged as effective strategies for HCC treatment with multiple clinical advantages. However, their curative efficacy is not always satisfactory, limited by the dysfunctional T cell status. Thus, there is a pressing need to discover novel potential biomarkers indicative of T cell exhaustion (Tex) for personalized immunotherapies. One promising target is Cyclin-dependent kinase inhibitor 2 (CDKN2) gene, a key cell cycle regulator with aberrant expression in HCC. However, its specific involvement remains unclear. Herein, we assessed the potential of CDKN2 expression as a promising biomarker for HCC progression, particularly for exhausted T cells. Our transcriptome analysis of CDKN2 in HCC revealed its significant role involving in HCC development. Remarkably, single-cell transcriptomic analysis revealed a notable correlation between CDKN2 expression, particularly CDKN2A, and Tex markers, which was further validated by a human cohort study using human HCC tissue microarray, highlighting CDKN2 expression as a potential biomarker for Tex within the intricate landscape of HCC progression. These findings provide novel perspectives that hold promise for addressing the unmet therapeutic need within HCC treatment. [BMB Reports 2024; 57(6): 287-292].</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214889/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMB Reports","FirstCategoryId":"99","ListUrlMain":"","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatocellular Carcinoma (HCC), the predominant primary hepatic malignancy, is the prime contributor to mortality. Despite the availability of multiple surgical interventions, patient outcomes remain suboptimal. Immunotherapies have emerged as effective strategies for HCC treatment with multiple clinical advantages. However, their curative efficacy is not always satisfactory, limited by the dysfunctional T cell status. Thus, there is a pressing need to discover novel potential biomarkers indicative of T cell exhaustion (Tex) for personalized immunotherapies. One promising target is Cyclin-dependent kinase inhibitor 2 (CDKN2) gene, a key cell cycle regulator with aberrant expression in HCC. However, its specific involvement remains unclear. Herein, we assessed the potential of CDKN2 expression as a promising biomarker for HCC progression, particularly for exhausted T cells. Our transcriptome analysis of CDKN2 in HCC revealed its significant role involving in HCC development. Remarkably, single-cell transcriptomic analysis revealed a notable correlation between CDKN2 expression, particularly CDKN2A, and Tex markers, which was further validated by a human cohort study using human HCC tissue microarray, highlighting CDKN2 expression as a potential biomarker for Tex within the intricate landscape of HCC progression. These findings provide novel perspectives that hold promise for addressing the unmet therapeutic need within HCC treatment. [BMB Reports 2024; 57(6): 287-292].

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CDKN2 表达是肝细胞癌中 T 细胞衰竭的潜在生物标志物。
肝细胞癌(HCC)是最主要的原发性肝脏恶性肿瘤,也是导致死亡的主要原因。尽管有多种外科干预措施,但患者的治疗效果仍不理想。免疫疗法已成为治疗 HCC 的有效策略,具有多种临床优势。然而,由于 T 细胞功能失调,其疗效并不总是令人满意。因此,亟需为个性化免疫疗法发现指示 T 细胞衰竭(Tex)的新型潜在生物标志物。一个有希望的靶点是细胞周期蛋白依赖性激酶抑制剂 2(CDKN2)基因,它是一个关键的细胞周期调节因子,在 HCC 中表达异常。然而,它的具体参与情况仍不清楚。在此,我们评估了 CDKN2 表达作为 HCC 进展生物标志物的潜力,尤其是对于衰竭的 T 细胞。我们对 HCC 中 CDKN2 的转录组分析表明了它在 HCC 发展过程中的重要作用。值得注意的是,单细胞转录组分析表明 CDKN2(尤其是 CDKN2A)的表达与 Tex 标志物之间存在显著的相关性,这一点在一项使用人类 HCC 组织芯片进行的人类队列研究中得到了进一步验证,从而凸显了 CDKN2 的表达在错综复杂的 HCC 进展过程中是 Tex 的潜在生物标志物。这些发现提供了新的视角,有望解决 HCC 治疗中尚未满足的治疗需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMB Reports
BMB Reports 生物-生化与分子生物学
CiteScore
5.10
自引率
7.90%
发文量
141
审稿时长
1 months
期刊介绍: The BMB Reports (BMB Rep, established in 1968) is published at the end of every month by Korean Society for Biochemistry and Molecular Biology. Copyright is reserved by the Society. The journal publishes short articles and mini reviews. We expect that the BMB Reports will deliver the new scientific findings and knowledge to our readers in fast and timely manner.
期刊最新文献
DNA regulatory element cooperation and competition in transcription. Antisense-mediated splicing correction as a therapeutic approach for p53 K120R mutation. Cereblon regulates the production of hepatic fibroblast growth factor 23 in diabetes. Differential roles of N- and C-terminal LIR motifs in the catalytic activity and membrane targeting of RavZ and ATG4B proteins. Specialized pro-resolving mediator 7S MaR1 inhibits IL-6 expression via modulating ROS/p38/ERK/NF-κB pathways in PM10-exposed keratinocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1