Depeng Wang, Jiazhi Wang, Zhi Wang, Ning Zhang, Jianrong Zeng, Haixia Zhong* and Xinbo Zhang*,
{"title":"Supported Cu/Ni Bimetallic Cluster Electrocatalysts Boost CO2 Reduction","authors":"Depeng Wang, Jiazhi Wang, Zhi Wang, Ning Zhang, Jianrong Zeng, Haixia Zhong* and Xinbo Zhang*, ","doi":"10.1021/prechem.3c00101","DOIUrl":null,"url":null,"abstract":"<p >Supported metal clusters with the integrated advantages of single-atom catalysts and conventional nanoparticles held great promise in the electrocatalytic carbon dioxide reduction (ECO<sub>2</sub>R) operated at low overpotential and high current density. However, its precise synthesis and the understanding of synergistically catalytic effects remain challenging. Herein, we report a facile method to synthesize the bimetallic Cu and Ni clusters anchored on porous carbon (Cu/Ni–NC) and achieve an enhanced ECO<sub>2</sub>R. The aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and synchrotron X-ray absorption spectroscopy were employed to verify the metal dispersion and the coordination of Cu/Ni clusters on NC. As a result of this route, the target Cu/Ni–NC exhibits excellent electrocatalytic performance including a stable 30 h electrolysis at 200 mA cm<sup>–2</sup> with carbon monoxide Faradaic efficiency of ∼95.1% using a membrane electrode assembly electrolysis cell. Combined with the in situ analysis of the surface-enhanced Fourier transform infrared spectroelectrochemistry, we propose that the synergistic effects between Ni and Cu can effectively promote the H<sub>2</sub>O dissociation, thereby accelerate the hydrogenation of CO<sub>2</sub> to *COOH and the overall reaction process.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 3","pages":"96–102"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.3c00101","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/prechem.3c00101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Supported metal clusters with the integrated advantages of single-atom catalysts and conventional nanoparticles held great promise in the electrocatalytic carbon dioxide reduction (ECO2R) operated at low overpotential and high current density. However, its precise synthesis and the understanding of synergistically catalytic effects remain challenging. Herein, we report a facile method to synthesize the bimetallic Cu and Ni clusters anchored on porous carbon (Cu/Ni–NC) and achieve an enhanced ECO2R. The aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and synchrotron X-ray absorption spectroscopy were employed to verify the metal dispersion and the coordination of Cu/Ni clusters on NC. As a result of this route, the target Cu/Ni–NC exhibits excellent electrocatalytic performance including a stable 30 h electrolysis at 200 mA cm–2 with carbon monoxide Faradaic efficiency of ∼95.1% using a membrane electrode assembly electrolysis cell. Combined with the in situ analysis of the surface-enhanced Fourier transform infrared spectroelectrochemistry, we propose that the synergistic effects between Ni and Cu can effectively promote the H2O dissociation, thereby accelerate the hydrogenation of CO2 to *COOH and the overall reaction process.
期刊介绍:
Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.