Pub Date : 2024-10-14DOI: 10.1021/prechem.4c0005810.1021/prechem.4c00058
Nan Dai, Yunyang Qian, Denan Wang, Jiajia Huang, Xinyu Guan, Zhongyuan Lin, Weijie Yang, Rui Wang*, Jier Huang, Shuang-Quan Zang and Hai-Long Jiang*,
While photocatalytic CO2 reduction has been intensively investigated, reports on the influence of anions coordinated to catalytic metal sites on CO2 photoreduction remain limited. Herein, different coordinated anions (F–, Cl–, OAc–, and NO3–) around single Co sites installed on bipyridine-based three-component covalent organic frameworks (COFs) were synthesized, affording TBD-COF-Co-X (X = F, Cl, OAc, and NO3), for photocatalytic CO2 reduction. Notably, the presence of these coordinated anions on the Co sites significantly influences the photocatalytic performance, where TBD-COF-Co-F exhibits superior activity to its counterparts. Combined experimental and theoretical results indicate that the enhanced activity in TBD-COF-Co-F is attributed to its efficient charge transfer, high CO2 adsorption capacity, and low energy barrier for CO2 activation. This study provides a new strategy for boosting COF photocatalysis through coordinated anion regulation around catalytic metal sites.
虽然光催化二氧化碳还原的研究一直很深入,但有关配位到催化金属位点的阴离子对二氧化碳光还原影响的报道仍然有限。在此,我们合成了安装在基于双吡啶的三组分共价有机框架(COF)上的单个 Co 位点周围的不同配位阴离子(F-、Cl-、OAc- 和 NO3-),得到了用于光催化二氧化碳还原的 TBD-COF-Co-X(X = F、Cl、OAc 和 NO3)。值得注意的是,这些配位阴离子在 Co 位点上的存在极大地影响了光催化性能,其中 TBD-COF-Co-F 的活性优于同类产品。综合实验和理论结果表明,TBD-COF-Co-F 活性的增强归功于其高效的电荷转移、高二氧化碳吸附能力和低二氧化碳活化能垒。这项研究为通过催化金属位点周围的配位阴离子调节来促进 COF 光催化提供了一种新策略。
{"title":"Regulation of Coordinating Anions around Single Co(II) Sites in a Covalent Organic Framework for Boosting CO2 Photoreduction","authors":"Nan Dai, Yunyang Qian, Denan Wang, Jiajia Huang, Xinyu Guan, Zhongyuan Lin, Weijie Yang, Rui Wang*, Jier Huang, Shuang-Quan Zang and Hai-Long Jiang*, ","doi":"10.1021/prechem.4c0005810.1021/prechem.4c00058","DOIUrl":"https://doi.org/10.1021/prechem.4c00058https://doi.org/10.1021/prechem.4c00058","url":null,"abstract":"<p >While photocatalytic CO<sub>2</sub> reduction has been intensively investigated, reports on the influence of anions coordinated to catalytic metal sites on CO<sub>2</sub> photoreduction remain limited. Herein, different coordinated anions (F<sup>–</sup>, Cl<sup>–</sup>, OAc<sup>–</sup>, and NO<sub>3</sub><sup>–</sup>) around single Co sites installed on bipyridine-based three-component covalent organic frameworks (COFs) were synthesized, affording TBD-COF-Co-X (X = F, Cl, OAc, and NO<sub>3</sub>), for photocatalytic CO<sub>2</sub> reduction. Notably, the presence of these coordinated anions on the Co sites significantly influences the photocatalytic performance, where TBD-COF-Co-F exhibits superior activity to its counterparts. Combined experimental and theoretical results indicate that the enhanced activity in TBD-COF-Co-F is attributed to its efficient charge transfer, high CO<sub>2</sub> adsorption capacity, and low energy barrier for CO<sub>2</sub> activation. This study provides a new strategy for boosting COF photocatalysis through coordinated anion regulation around catalytic metal sites.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 11","pages":"600–609 600–609"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
While photocatalytic CO2 reduction has been intensively investigated, reports on the influence of anions coordinated to catalytic metal sites on CO2 photoreduction remain limited. Herein, different coordinated anions (F-, Cl-, OAc-, and NO3-) around single Co sites installed on bipyridine-based three-component covalent organic frameworks (COFs) were synthesized, affording TBD-COF-Co-X (X = F, Cl, OAc, and NO3), for photocatalytic CO2 reduction. Notably, the presence of these coordinated anions on the Co sites significantly influences the photocatalytic performance, where TBD-COF-Co-F exhibits superior activity to its counterparts. Combined experimental and theoretical results indicate that the enhanced activity in TBD-COF-Co-F is attributed to its efficient charge transfer, high CO2 adsorption capacity, and low energy barrier for CO2 activation. This study provides a new strategy for boosting COF photocatalysis through coordinated anion regulation around catalytic metal sites.
{"title":"Regulation of Coordinating Anions around Single Co(II) Sites in a Covalent Organic Framework for Boosting CO<sub>2</sub> Photoreduction.","authors":"Nan Dai, Yunyang Qian, Denan Wang, Jiajia Huang, Xinyu Guan, Zhongyuan Lin, Weijie Yang, Rui Wang, Jier Huang, Shuang-Quan Zang, Hai-Long Jiang","doi":"10.1021/prechem.4c00058","DOIUrl":"10.1021/prechem.4c00058","url":null,"abstract":"<p><p>While photocatalytic CO<sub>2</sub> reduction has been intensively investigated, reports on the influence of anions coordinated to catalytic metal sites on CO<sub>2</sub> photoreduction remain limited. Herein, different coordinated anions (F<sup>-</sup>, Cl<sup>-</sup>, OAc<sup>-</sup>, and NO<sub>3</sub> <sup>-</sup>) around single Co sites installed on bipyridine-based three-component covalent organic frameworks (COFs) were synthesized, affording TBD-COF-Co-X (X = F, Cl, OAc, and NO<sub>3</sub>), for photocatalytic CO<sub>2</sub> reduction. Notably, the presence of these coordinated anions on the Co sites significantly influences the photocatalytic performance, where TBD-COF-Co-F exhibits superior activity to its counterparts. Combined experimental and theoretical results indicate that the enhanced activity in TBD-COF-Co-F is attributed to its efficient charge transfer, high CO<sub>2</sub> adsorption capacity, and low energy barrier for CO<sub>2</sub> activation. This study provides a new strategy for boosting COF photocatalysis through coordinated anion regulation around catalytic metal sites.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 11","pages":"600-609"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600349/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Using density functional theory, we carefully calculated the relative stability of monolayer, few-layer, and cluster structures with Penta PdSe2, T-phase PdSe2, and Pd2Se3-phase. We found that the stability of Penta PdSe2 increases with the number of layers. The Penta PdSe2, T-phase PdSe2, and Pd2Se3 monolayers are all semiconducting, with band gaps of 1.77, 0.81, and 0.65 eV, respectively. The formation energy of palladium selenide clusters with different phase structures is calculated, considering the cluster size, stoichiometry, and chemical environment. Under typical experimental conditions, Pd2Se3 phase clusters are found to be dominant, having the lowest formation energy among all of the phases considered, with this dominance increasing as cluster size grows. Adjusting the Pd-Se ratio in the environment allows for controlled synthesis of specific palladium selenide phases, providing theoretical insights into the nucleation mechanisms of PdSe2 and other transition metal chalcogenides.
{"title":"Controlled Synthesis and Phase Transition Mechanisms of Palladium Selenide: A First-Principles Study.","authors":"Mingxiang Zhang, Aixinye Zhang, Hao Ren, Wenyue Guo, Feng Ding, Wen Zhao","doi":"10.1021/prechem.4c00049","DOIUrl":"10.1021/prechem.4c00049","url":null,"abstract":"<p><p>Using density functional theory, we carefully calculated the relative stability of monolayer, few-layer, and cluster structures with Penta PdSe<sub>2</sub>, T-phase PdSe<sub>2</sub>, and Pd<sub>2</sub>Se<sub>3</sub>-phase. We found that the stability of Penta PdSe<sub>2</sub> increases with the number of layers. The Penta PdSe<sub>2</sub>, T-phase PdSe<sub>2</sub>, and Pd<sub>2</sub>Se<sub>3</sub> monolayers are all semiconducting, with band gaps of 1.77, 0.81, and 0.65 eV, respectively. The formation energy of palladium selenide clusters with different phase structures is calculated, considering the cluster size, stoichiometry, and chemical environment. Under typical experimental conditions, Pd<sub>2</sub>Se<sub>3</sub> phase clusters are found to be dominant, having the lowest formation energy among all of the phases considered, with this dominance increasing as cluster size grows. Adjusting the Pd-Se ratio in the environment allows for controlled synthesis of specific palladium selenide phases, providing theoretical insights into the nucleation mechanisms of PdSe<sub>2</sub> and other transition metal chalcogenides.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 10","pages":"545-552"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Using density functional theory, we carefully calculated the relative stability of monolayer, few-layer, and cluster structures with Penta PdSe2, T-phase PdSe2, and Pd2Se3-phase. We found that the stability of Penta PdSe2 increases with the number of layers. The Penta PdSe2, T-phase PdSe2, and Pd2Se3 monolayers are all semiconducting, with band gaps of 1.77, 0.81, and 0.65 eV, respectively. The formation energy of palladium selenide clusters with different phase structures is calculated, considering the cluster size, stoichiometry, and chemical environment. Under typical experimental conditions, Pd2Se3 phase clusters are found to be dominant, having the lowest formation energy among all of the phases considered, with this dominance increasing as cluster size grows. Adjusting the Pd–Se ratio in the environment allows for controlled synthesis of specific palladium selenide phases, providing theoretical insights into the nucleation mechanisms of PdSe2 and other transition metal chalcogenides.
{"title":"Controlled Synthesis and Phase Transition Mechanisms of Palladium Selenide: A First-Principles Study","authors":"Mingxiang Zhang, Aixinye Zhang, Hao Ren, Wenyue Guo, Feng Ding and Wen Zhao*, ","doi":"10.1021/prechem.4c0004910.1021/prechem.4c00049","DOIUrl":"https://doi.org/10.1021/prechem.4c00049https://doi.org/10.1021/prechem.4c00049","url":null,"abstract":"<p >Using density functional theory, we carefully calculated the relative stability of monolayer, few-layer, and cluster structures with Penta PdSe<sub>2</sub>, T-phase PdSe<sub>2</sub>, and Pd<sub>2</sub>Se<sub>3</sub>-phase. We found that the stability of Penta PdSe<sub>2</sub> increases with the number of layers. The Penta PdSe<sub>2</sub>, T-phase PdSe<sub>2</sub>, and Pd<sub>2</sub>Se<sub>3</sub> monolayers are all semiconducting, with band gaps of 1.77, 0.81, and 0.65 eV, respectively. The formation energy of palladium selenide clusters with different phase structures is calculated, considering the cluster size, stoichiometry, and chemical environment. Under typical experimental conditions, Pd<sub>2</sub>Se<sub>3</sub> phase clusters are found to be dominant, having the lowest formation energy among all of the phases considered, with this dominance increasing as cluster size grows. Adjusting the Pd–Se ratio in the environment allows for controlled synthesis of specific palladium selenide phases, providing theoretical insights into the nucleation mechanisms of PdSe<sub>2</sub> and other transition metal chalcogenides.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 10","pages":"545–552 545–552"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18eCollection Date: 2024-10-28DOI: 10.1021/prechem.4c00050
Catherine H Mulyadi, Masanori Uji, Bhavesh Parmar, Kana Orihashi, Nobuhiro Yanai
The integration of multiple chromophore units into a single molecule is expected to improve the performance of photon upconversion based on triplet-triplet annihilation (TTA-UC) that can convert low energy photons to higher energy photons at low excitation intensity. In this study, a macrocyclic parallel dimer of 9,10-diphenylanthracene (DPA) with a precisely parallel orientation, named MPD-2, is synthesized, and its TTA-UC properties are investigated. MPD-2 shows a green-to-blue TTA-UC emission in the presence of a triplet sensitizer, platinum octaethylporphyrin (PtOEP). Compared to monomeric DPA, MPD-2 results in an enhancement of the spin statistical factor of TTA and a decrease in the excitation light intensity due to the intramolecular TTA process. The obtained structure-property relationship provides important information for the further improvement of TTA-UC properties.
{"title":"Triplet-Triplet Annihilation-Based Photon Upconversion with a Macrocyclic Parallel Dimer.","authors":"Catherine H Mulyadi, Masanori Uji, Bhavesh Parmar, Kana Orihashi, Nobuhiro Yanai","doi":"10.1021/prechem.4c00050","DOIUrl":"10.1021/prechem.4c00050","url":null,"abstract":"<p><p>The integration of multiple chromophore units into a single molecule is expected to improve the performance of photon upconversion based on triplet-triplet annihilation (TTA-UC) that can convert low energy photons to higher energy photons at low excitation intensity. In this study, a macrocyclic parallel dimer of 9,10-diphenylanthracene (DPA) with a precisely parallel orientation, named MPD-2, is synthesized, and its TTA-UC properties are investigated. MPD-2 shows a green-to-blue TTA-UC emission in the presence of a triplet sensitizer, platinum octaethylporphyrin (PtOEP). Compared to monomeric DPA, MPD-2 results in an enhancement of the spin statistical factor of TTA and a decrease in the excitation light intensity due to the intramolecular TTA process. The obtained structure-property relationship provides important information for the further improvement of TTA-UC properties.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 10","pages":"539-544"},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1021/prechem.4c0005010.1021/prechem.4c00050
Catherine H. Mulyadi, Masanori Uji, Bhavesh Parmar, Kana Orihashi and Nobuhiro Yanai*,
The integration of multiple chromophore units into a single molecule is expected to improve the performance of photon upconversion based on triplet–triplet annihilation (TTA-UC) that can convert low energy photons to higher energy photons at low excitation intensity. In this study, a macrocyclic parallel dimer of 9,10-diphenylanthracene (DPA) with a precisely parallel orientation, named MPD-2, is synthesized, and its TTA-UC properties are investigated. MPD-2 shows a green-to-blue TTA-UC emission in the presence of a triplet sensitizer, platinum octaethylporphyrin (PtOEP). Compared to monomeric DPA, MPD-2 results in an enhancement of the spin statistical factor of TTA and a decrease in the excitation light intensity due to the intramolecular TTA process. The obtained structure–property relationship provides important information for the further improvement of TTA-UC properties.
{"title":"Triplet–Triplet Annihilation-Based Photon Upconversion with a Macrocyclic Parallel Dimer","authors":"Catherine H. Mulyadi, Masanori Uji, Bhavesh Parmar, Kana Orihashi and Nobuhiro Yanai*, ","doi":"10.1021/prechem.4c0005010.1021/prechem.4c00050","DOIUrl":"https://doi.org/10.1021/prechem.4c00050https://doi.org/10.1021/prechem.4c00050","url":null,"abstract":"<p >The integration of multiple chromophore units into a single molecule is expected to improve the performance of photon upconversion based on triplet–triplet annihilation (TTA-UC) that can convert low energy photons to higher energy photons at low excitation intensity. In this study, a macrocyclic parallel dimer of 9,10-diphenylanthracene (DPA) with a precisely parallel orientation, named MPD-2, is synthesized, and its TTA-UC properties are investigated. MPD-2 shows a green-to-blue TTA-UC emission in the presence of a triplet sensitizer, platinum octaethylporphyrin (PtOEP). Compared to monomeric DPA, MPD-2 results in an enhancement of the spin statistical factor of TTA and a decrease in the excitation light intensity due to the intramolecular TTA process. The obtained structure–property relationship provides important information for the further improvement of TTA-UC properties.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 10","pages":"539–544 539–544"},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142551716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16eCollection Date: 2024-10-28DOI: 10.1021/prechem.4c00048
Yuxin Yang, Yueqi Li, Longhua Tang, Jinghong Li
Single-molecule bioelectronic sensing, a groundbreaking domain in biological research, has revolutionized our understanding of molecules by revealing deep insights into fundamental biological processes. The advent of emergent technologies, such as nanogapped electrodes and nanopores, has greatly enhanced this field, providing exceptional sensitivity, resolution, and integration capabilities. However, challenges persist, such as complex data sets with high noise levels and stochastic molecular dynamics. Artificial intelligence (AI) has stepped in to address these issues with its powerful data processing capabilities. AI algorithms effectively extract meaningful features, detect subtle changes, improve signal-to-noise ratios, and uncover hidden patterns in massive data. This review explores the synergy between AI and single-molecule bioelectronic sensing, focusing on how AI enhances signal processing and data analysis to boost accuracy and reliability. We also discuss current limitations and future directions for integrating AI, highlighting its potential to advance biological research and technological innovation.
{"title":"Single-Molecule Bioelectronic Sensors with AI-Aided Data Analysis: Convergence and Challenges.","authors":"Yuxin Yang, Yueqi Li, Longhua Tang, Jinghong Li","doi":"10.1021/prechem.4c00048","DOIUrl":"10.1021/prechem.4c00048","url":null,"abstract":"<p><p>Single-molecule bioelectronic sensing, a groundbreaking domain in biological research, has revolutionized our understanding of molecules by revealing deep insights into fundamental biological processes. The advent of emergent technologies, such as nanogapped electrodes and nanopores, has greatly enhanced this field, providing exceptional sensitivity, resolution, and integration capabilities. However, challenges persist, such as complex data sets with high noise levels and stochastic molecular dynamics. Artificial intelligence (AI) has stepped in to address these issues with its powerful data processing capabilities. AI algorithms effectively extract meaningful features, detect subtle changes, improve signal-to-noise ratios, and uncover hidden patterns in massive data. This review explores the synergy between AI and single-molecule bioelectronic sensing, focusing on how AI enhances signal processing and data analysis to boost accuracy and reliability. We also discuss current limitations and future directions for integrating AI, highlighting its potential to advance biological research and technological innovation.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 10","pages":"518-538"},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523000/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16eCollection Date: 2024-10-28DOI: 10.1021/prechem.4c00057
Wenbin Yuan, Shengyu Dai
Recently, the chain-walking ethylene polymerization strategy has garnered widespread attention as an efficient and straightforward method for preparing polyolefin elastomers. In this study, a series of 2,4,8-triarylnaphthyl iminopyridyl nickel catalysts were synthesized and used in ethylene polymerization. These catalysts demonstrated moderate catalytic activity (105 g mol-1 h-1), producing high-molecular-weight (up to 145.5 kg/mol) polyethylene materials with high branching degrees (75-95/1000C) and correspondingly low melting points. Detailed analysis using 13C NMR spectroscopy revealed that the polyethylenes primarily featured methyl and long-chain branches. Mechanical testing of the polyethylene samples obtained from catalysts Ni1-Ni3 exhibited moderate stress at break (4.64-6.97 MPa) coupled with a very high strain at break (1650-3752%), indicating their very good ductility. Furthermore, these polyethylenes showcased great elastic recovery abilities, with strain recovery values ranging from 72% to 85%. In contrast, the polyethylene produced by Ni4 displayed notably inferior tensile strength (0.16 MPa) and tensile recovery (43%). To the best of our knowledge, this study represents the inaugural utilization of a nickel iminopyridyl catalyst in the preparation of a polyethylene thermoplastic elastomer.
{"title":"Synthesis of Ultralow-Density Polyethylene Elastomers Using Triarylnaphthyl Iminopyridyl Ni(II) Catalysts.","authors":"Wenbin Yuan, Shengyu Dai","doi":"10.1021/prechem.4c00057","DOIUrl":"10.1021/prechem.4c00057","url":null,"abstract":"<p><p>Recently, the chain-walking ethylene polymerization strategy has garnered widespread attention as an efficient and straightforward method for preparing polyolefin elastomers. In this study, a series of 2,4,8-triarylnaphthyl iminopyridyl nickel catalysts were synthesized and used in ethylene polymerization. These catalysts demonstrated moderate catalytic activity (10<sup>5</sup> g mol<sup>-1</sup> h<sup>-1</sup>), producing high-molecular-weight (up to 145.5 kg/mol) polyethylene materials with high branching degrees (75-95/1000C) and correspondingly low melting points. Detailed analysis using <sup>13</sup>C NMR spectroscopy revealed that the polyethylenes primarily featured methyl and long-chain branches. Mechanical testing of the polyethylene samples obtained from catalysts <b>Ni1</b>-<b>Ni3</b> exhibited moderate stress at break (4.64-6.97 MPa) coupled with a very high strain at break (1650-3752%), indicating their very good ductility. Furthermore, these polyethylenes showcased great elastic recovery abilities, with strain recovery values ranging from 72% to 85%. In contrast, the polyethylene produced by <b>Ni4</b> displayed notably inferior tensile strength (0.16 MPa) and tensile recovery (43%). To the best of our knowledge, this study represents the inaugural utilization of a nickel iminopyridyl catalyst in the preparation of a polyethylene thermoplastic elastomer.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"2 10","pages":"553-558"},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}