Pub Date : 2025-01-10DOI: 10.1021/prechem.4c0008410.1021/prechem.4c00084
Yang Liu, Ziren Wang, Guoliang Hu, Xiaomeng Chen, Ke Xu, Yuqiao Guo*, Yi Xie and Changzheng Wu*,
The past few decades have witnessed significant development in intercalation chemistry research aimed at precisely controlling material properties. Intercalation, as a powerful surface and interface synthesis strategy, facilitates the insertion of external guests into van der Waals (vdW) gaps in two-dimensional (2D) layered materials, inducing various modulation effects (the weakening of interlayer interactions, changes in electronic structures, interfacial charge transfer, and symmetry manipulation) to tailor material properties while preserving intralayer covalent bonds. Importantly, benefiting from the very diverse structures and properties of organic molecules, their intercalation enables the integration of various molecules with a wide array of 2D materials, resulting in the creation of numerous organic–inorganic hybrid superlattices with exotic properties, which brings extensive potential applications in fields such as spintronics, superconductor electronics, optoelectronics, and thermoelectrics. Herein, based on recent advancements in organic intercalation systems, we briefly discuss a summary and classification of various organic guest species. We also discuss three modulation effects induced by organic intercalation and further introduce intriguing modulations in physicochemical properties, including superconductivity, magnetism, thermoelectricity and thermal conductivity, chiral-induced spin selectivity (CISS) effects, and interlayer-confined chemical reaction. Finally, we offer insights into future research opportunities and emerging challenges in organic intercalation systems.
{"title":"Precision Intercalation of Organic Molecules in 2D Layered Materials: From Interface Chemistry to Low-Dimensional Physics","authors":"Yang Liu, Ziren Wang, Guoliang Hu, Xiaomeng Chen, Ke Xu, Yuqiao Guo*, Yi Xie and Changzheng Wu*, ","doi":"10.1021/prechem.4c0008410.1021/prechem.4c00084","DOIUrl":"https://doi.org/10.1021/prechem.4c00084https://doi.org/10.1021/prechem.4c00084","url":null,"abstract":"<p >The past few decades have witnessed significant development in intercalation chemistry research aimed at precisely controlling material properties. Intercalation, as a powerful surface and interface synthesis strategy, facilitates the insertion of external guests into van der Waals (vdW) gaps in two-dimensional (2D) layered materials, inducing various modulation effects (the weakening of interlayer interactions, changes in electronic structures, interfacial charge transfer, and symmetry manipulation) to tailor material properties while preserving intralayer covalent bonds. Importantly, benefiting from the very diverse structures and properties of organic molecules, their intercalation enables the integration of various molecules with a wide array of 2D materials, resulting in the creation of numerous organic–inorganic hybrid superlattices with exotic properties, which brings extensive potential applications in fields such as spintronics, superconductor electronics, optoelectronics, and thermoelectrics. Herein, based on recent advancements in organic intercalation systems, we briefly discuss a summary and classification of various organic guest species. We also discuss three modulation effects induced by organic intercalation and further introduce intriguing modulations in physicochemical properties, including superconductivity, magnetism, thermoelectricity and thermal conductivity, chiral-induced spin selectivity (CISS) effects, and interlayer-confined chemical reaction. Finally, we offer insights into future research opportunities and emerging challenges in organic intercalation systems.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 2","pages":"51–71 51–71"},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00084","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143473674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10eCollection Date: 2025-02-24DOI: 10.1021/prechem.4c00084
Yang Liu, Ziren Wang, Guoliang Hu, Xiaomeng Chen, Ke Xu, Yuqiao Guo, Yi Xie, Changzheng Wu
The past few decades have witnessed significant development in intercalation chemistry research aimed at precisely controlling material properties. Intercalation, as a powerful surface and interface synthesis strategy, facilitates the insertion of external guests into van der Waals (vdW) gaps in two-dimensional (2D) layered materials, inducing various modulation effects (the weakening of interlayer interactions, changes in electronic structures, interfacial charge transfer, and symmetry manipulation) to tailor material properties while preserving intralayer covalent bonds. Importantly, benefiting from the very diverse structures and properties of organic molecules, their intercalation enables the integration of various molecules with a wide array of 2D materials, resulting in the creation of numerous organic-inorganic hybrid superlattices with exotic properties, which brings extensive potential applications in fields such as spintronics, superconductor electronics, optoelectronics, and thermoelectrics. Herein, based on recent advancements in organic intercalation systems, we briefly discuss a summary and classification of various organic guest species. We also discuss three modulation effects induced by organic intercalation and further introduce intriguing modulations in physicochemical properties, including superconductivity, magnetism, thermoelectricity and thermal conductivity, chiral-induced spin selectivity (CISS) effects, and interlayer-confined chemical reaction. Finally, we offer insights into future research opportunities and emerging challenges in organic intercalation systems.
{"title":"Precision Intercalation of Organic Molecules in 2D Layered Materials: From Interface Chemistry to Low-Dimensional Physics.","authors":"Yang Liu, Ziren Wang, Guoliang Hu, Xiaomeng Chen, Ke Xu, Yuqiao Guo, Yi Xie, Changzheng Wu","doi":"10.1021/prechem.4c00084","DOIUrl":"10.1021/prechem.4c00084","url":null,"abstract":"<p><p>The past few decades have witnessed significant development in intercalation chemistry research aimed at precisely controlling material properties. Intercalation, as a powerful surface and interface synthesis strategy, facilitates the insertion of external guests into van der Waals (vdW) gaps in two-dimensional (2D) layered materials, inducing various modulation effects (the weakening of interlayer interactions, changes in electronic structures, interfacial charge transfer, and symmetry manipulation) to tailor material properties while preserving intralayer covalent bonds. Importantly, benefiting from the very diverse structures and properties of organic molecules, their intercalation enables the integration of various molecules with a wide array of 2D materials, resulting in the creation of numerous organic-inorganic hybrid superlattices with exotic properties, which brings extensive potential applications in fields such as spintronics, superconductor electronics, optoelectronics, and thermoelectrics. Herein, based on recent advancements in organic intercalation systems, we briefly discuss a summary and classification of various organic guest species. We also discuss three modulation effects induced by organic intercalation and further introduce intriguing modulations in physicochemical properties, including superconductivity, magnetism, thermoelectricity and thermal conductivity, chiral-induced spin selectivity (CISS) effects, and interlayer-confined chemical reaction. Finally, we offer insights into future research opportunities and emerging challenges in organic intercalation systems.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 2","pages":"51-71"},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143524569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10eCollection Date: 2025-02-24DOI: 10.1021/prechem.4c00082
Yangyang Jiang, Junyang Liu, Yian Guo, Tao Ye
Roselipin 1A, a bioactive natural glycolipid isolated from marine fungal metabolites, presents an unresolved configuration of its nine stereogenic centers within the polyketide chain. Herein, we elucidate the comprehensive stereostructure of roselipin 1A through an integrative approach combining predictive rule-guided analysis with synthetic chemistry. The efficient total synthesis facilitated the unequivocal confirmation of the hypothesized stereochemistry for roselipin 1A, thereby establishing its precise molecular configuration.
{"title":"Total Synthesis and Stereochemical Assignment of Roselipin 1A.","authors":"Yangyang Jiang, Junyang Liu, Yian Guo, Tao Ye","doi":"10.1021/prechem.4c00082","DOIUrl":"10.1021/prechem.4c00082","url":null,"abstract":"<p><p>Roselipin 1A, a bioactive natural glycolipid isolated from marine fungal metabolites, presents an unresolved configuration of its nine stereogenic centers within the polyketide chain. Herein, we elucidate the comprehensive stereostructure of roselipin 1A through an integrative approach combining predictive rule-guided analysis with synthetic chemistry. The efficient total synthesis facilitated the unequivocal confirmation of the hypothesized stereochemistry for roselipin 1A, thereby establishing its precise molecular configuration.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 2","pages":"82-88"},"PeriodicalIF":0.0,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863155/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143524571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10DOI: 10.1021/prechem.4c0008210.1021/prechem.4c00082
Yangyang Jiang, Junyang Liu, Yian Guo and Tao Ye*,
Roselipin 1A, a bioactive natural glycolipid isolated from marine fungal metabolites, presents an unresolved configuration of its nine stereogenic centers within the polyketide chain. Herein, we elucidate the comprehensive stereostructure of roselipin 1A through an integrative approach combining predictive rule-guided analysis with synthetic chemistry. The efficient total synthesis facilitated the unequivocal confirmation of the hypothesized stereochemistry for roselipin 1A, thereby establishing its precise molecular configuration.
{"title":"Total Synthesis and Stereochemical Assignment of Roselipin 1A","authors":"Yangyang Jiang, Junyang Liu, Yian Guo and Tao Ye*, ","doi":"10.1021/prechem.4c0008210.1021/prechem.4c00082","DOIUrl":"https://doi.org/10.1021/prechem.4c00082https://doi.org/10.1021/prechem.4c00082","url":null,"abstract":"<p >Roselipin 1A, a bioactive natural glycolipid isolated from marine fungal metabolites, presents an unresolved configuration of its nine stereogenic centers within the polyketide chain. Herein, we elucidate the comprehensive stereostructure of roselipin 1A through an integrative approach combining predictive rule-guided analysis with synthetic chemistry. The efficient total synthesis facilitated the unequivocal confirmation of the hypothesized stereochemistry for roselipin 1A, thereby establishing its precise molecular configuration.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 2","pages":"82–88 82–88"},"PeriodicalIF":0.0,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143473680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-06eCollection Date: 2025-01-27DOI: 10.1021/prechem.4c00072
Dingfang Hu, Rongrong Huang, Yu Fang
Tetra-coordinate boron-based fluorescent materials hold considerable promise across chemistry, biology and materials science due to their unique and precisely tunable optoelectronic properties. The incorporation of the heteroatom boron (B) enables these materials to exhibit high luminescence quantum yields, adjustable absorption and emission wavelengths, and exceptional photostability. This review examines the molecular design and applications of tetra-coordinate boron-based photoactive molecules, highlighting their roles in fluorescence sensing, anticounterfeiting, and imaging. We outline how structural features impact their properties and discuss strategies for enhancing their performance, including ligand modification and the extension of conjugation length, among others. Additionally, future research focus in this field is also addressed including strategies for diversifying molecular structures and enhancing molecular stability, which is believed to pave the way for innovative solutions to the challenges in areas such as sensing, imaging and information security.
{"title":"Recent Advances in Tetra-Coordinate Boron-Based Photoactive Molecules for Luminescent Sensing, Imaging, and Anticounterfeiting.","authors":"Dingfang Hu, Rongrong Huang, Yu Fang","doi":"10.1021/prechem.4c00072","DOIUrl":"10.1021/prechem.4c00072","url":null,"abstract":"<p><p>Tetra-coordinate boron-based fluorescent materials hold considerable promise across chemistry, biology and materials science due to their unique and precisely tunable optoelectronic properties. The incorporation of the heteroatom boron (B) enables these materials to exhibit high luminescence quantum yields, adjustable absorption and emission wavelengths, and exceptional photostability. This review examines the molecular design and applications of tetra-coordinate boron-based photoactive molecules, highlighting their roles in fluorescence sensing, anticounterfeiting, and imaging. We outline how structural features impact their properties and discuss strategies for enhancing their performance, including ligand modification and the extension of conjugation length, among others. Additionally, future research focus in this field is also addressed including strategies for diversifying molecular structures and enhancing molecular stability, which is believed to pave the way for innovative solutions to the challenges in areas such as sensing, imaging and information security.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 1","pages":"10-26"},"PeriodicalIF":0.0,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-06DOI: 10.1021/prechem.4c0007210.1021/prechem.4c00072
Dingfang Hu, Rongrong Huang* and Yu Fang*,
Tetra-coordinate boron-based fluorescent materials hold considerable promise across chemistry, biology and materials science due to their unique and precisely tunable optoelectronic properties. The incorporation of the heteroatom boron (B) enables these materials to exhibit high luminescence quantum yields, adjustable absorption and emission wavelengths, and exceptional photostability. This review examines the molecular design and applications of tetra-coordinate boron-based photoactive molecules, highlighting their roles in fluorescence sensing, anticounterfeiting, and imaging. We outline how structural features impact their properties and discuss strategies for enhancing their performance, including ligand modification and the extension of conjugation length, among others. Additionally, future research focus in this field is also addressed including strategies for diversifying molecular structures and enhancing molecular stability, which is believed to pave the way for innovative solutions to the challenges in areas such as sensing, imaging and information security.
{"title":"Recent Advances in Tetra-Coordinate Boron-Based Photoactive Molecules for Luminescent Sensing, Imaging, and Anticounterfeiting","authors":"Dingfang Hu, Rongrong Huang* and Yu Fang*, ","doi":"10.1021/prechem.4c0007210.1021/prechem.4c00072","DOIUrl":"https://doi.org/10.1021/prechem.4c00072https://doi.org/10.1021/prechem.4c00072","url":null,"abstract":"<p >Tetra-coordinate boron-based fluorescent materials hold considerable promise across chemistry, biology and materials science due to their unique and precisely tunable optoelectronic properties. The incorporation of the heteroatom boron (B) enables these materials to exhibit high luminescence quantum yields, adjustable absorption and emission wavelengths, and exceptional photostability. This review examines the molecular design and applications of tetra-coordinate boron-based photoactive molecules, highlighting their roles in fluorescence sensing, anticounterfeiting, and imaging. We outline how structural features impact their properties and discuss strategies for enhancing their performance, including ligand modification and the extension of conjugation length, among others. Additionally, future research focus in this field is also addressed including strategies for diversifying molecular structures and enhancing molecular stability, which is believed to pave the way for innovative solutions to the challenges in areas such as sensing, imaging and information security.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 1","pages":"10–26 10–26"},"PeriodicalIF":0.0,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143087249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1021/prechem.4c0007010.1021/prechem.4c00070
Jui-Han Fu*, De-Chian Chen, Yen-Ju Wu and Vincent Tung*,
Organic semiconducting nanomembranes (OSNMs), particularly carbon-based ones, are at the forefront of next-generation two-dimensional (2D) semiconductor research. These materials offer remarkable promise due to their diverse chemical properties and unique functionalities, paving the way for innovative applications across advanced semiconductor material sectors. Graphene stands out for its extraordinary mechanical strength, thermal conductivity, and superior charge transport capabilities, inspiring extensive research into other 2D carbon allotropes like graphyne and graphdiyne. With its high electron mobility and tunable bandgap, graphdiyne is particularly attractive for power-efficient electronic devices. However, synthesizing graphdiyne presents significant challenges, primarily due to the difficulty in achieving precise and deterministic control over the coupling of its monomers. This precision is crucial for determining the material’s porosity, periodicity, and overall functionality. Innovative approaches have been developed to address these challenges, such as the strategic assembly of molecular building blocks at heterogeneous interfaces. Furthermore, data-driven techniques, such as machine learning and artificial intelligence (AI), are proving invaluable in this field, assisting in screening precursors, optimizing structural configurations, and predicting novel properties of these materials. These advancements are essential for producing durable monolayer sheets that can be integrated into existing electronic components. Despite these advancements, the integration of graphdiyne into semiconductor technology remains complex. Achieving long-range coherence in bonding configurations and enhancing charge transport characteristics are significant hurdles. Continued research into robust and controllable synthesis techniques is essential for unlocking the full potential of graphdiyne and other 2D materials, leading to more efficient, faster, and mechanically robust electronics.
{"title":"Constructing Two-Dimensional, Ordered Networks of Carbon–Carbon Bonds with Precision","authors":"Jui-Han Fu*, De-Chian Chen, Yen-Ju Wu and Vincent Tung*, ","doi":"10.1021/prechem.4c0007010.1021/prechem.4c00070","DOIUrl":"https://doi.org/10.1021/prechem.4c00070https://doi.org/10.1021/prechem.4c00070","url":null,"abstract":"<p >Organic semiconducting nanomembranes (OSNMs), particularly carbon-based ones, are at the forefront of next-generation two-dimensional (2D) semiconductor research. These materials offer remarkable promise due to their diverse chemical properties and unique functionalities, paving the way for innovative applications across advanced semiconductor material sectors. Graphene stands out for its extraordinary mechanical strength, thermal conductivity, and superior charge transport capabilities, inspiring extensive research into other 2D carbon allotropes like graphyne and graphdiyne. With its high electron mobility and tunable bandgap, graphdiyne is particularly attractive for power-efficient electronic devices. However, synthesizing graphdiyne presents significant challenges, primarily due to the difficulty in achieving precise and deterministic control over the coupling of its monomers. This precision is crucial for determining the material’s porosity, periodicity, and overall functionality. Innovative approaches have been developed to address these challenges, such as the strategic assembly of molecular building blocks at heterogeneous interfaces. Furthermore, data-driven techniques, such as machine learning and artificial intelligence (AI), are proving invaluable in this field, assisting in screening precursors, optimizing structural configurations, and predicting novel properties of these materials. These advancements are essential for producing durable monolayer sheets that can be integrated into existing electronic components. Despite these advancements, the integration of graphdiyne into semiconductor technology remains complex. Achieving long-range coherence in bonding configurations and enhancing charge transport characteristics are significant hurdles. Continued research into robust and controllable synthesis techniques is essential for unlocking the full potential of graphdiyne and other 2D materials, leading to more efficient, faster, and mechanically robust electronics.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 1","pages":"3–9 3–9"},"PeriodicalIF":0.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143086878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04eCollection Date: 2025-01-27DOI: 10.1021/prechem.4c00070
Jui-Han Fu, De-Chian Chen, Yen-Ju Wu, Vincent Tung
Organic semiconducting nanomembranes (OSNMs), particularly carbon-based ones, are at the forefront of next-generation two-dimensional (2D) semiconductor research. These materials offer remarkable promise due to their diverse chemical properties and unique functionalities, paving the way for innovative applications across advanced semiconductor material sectors. Graphene stands out for its extraordinary mechanical strength, thermal conductivity, and superior charge transport capabilities, inspiring extensive research into other 2D carbon allotropes like graphyne and graphdiyne. With its high electron mobility and tunable bandgap, graphdiyne is particularly attractive for power-efficient electronic devices. However, synthesizing graphdiyne presents significant challenges, primarily due to the difficulty in achieving precise and deterministic control over the coupling of its monomers. This precision is crucial for determining the material's porosity, periodicity, and overall functionality. Innovative approaches have been developed to address these challenges, such as the strategic assembly of molecular building blocks at heterogeneous interfaces. Furthermore, data-driven techniques, such as machine learning and artificial intelligence (AI), are proving invaluable in this field, assisting in screening precursors, optimizing structural configurations, and predicting novel properties of these materials. These advancements are essential for producing durable monolayer sheets that can be integrated into existing electronic components. Despite these advancements, the integration of graphdiyne into semiconductor technology remains complex. Achieving long-range coherence in bonding configurations and enhancing charge transport characteristics are significant hurdles. Continued research into robust and controllable synthesis techniques is essential for unlocking the full potential of graphdiyne and other 2D materials, leading to more efficient, faster, and mechanically robust electronics.
{"title":"Constructing Two-Dimensional, Ordered Networks of Carbon-Carbon Bonds with Precision.","authors":"Jui-Han Fu, De-Chian Chen, Yen-Ju Wu, Vincent Tung","doi":"10.1021/prechem.4c00070","DOIUrl":"10.1021/prechem.4c00070","url":null,"abstract":"<p><p>Organic semiconducting nanomembranes (OSNMs), particularly carbon-based ones, are at the forefront of next-generation two-dimensional (2D) semiconductor research. These materials offer remarkable promise due to their diverse chemical properties and unique functionalities, paving the way for innovative applications across advanced semiconductor material sectors. Graphene stands out for its extraordinary mechanical strength, thermal conductivity, and superior charge transport capabilities, inspiring extensive research into other 2D carbon allotropes like graphyne and graphdiyne. With its high electron mobility and tunable bandgap, graphdiyne is particularly attractive for power-efficient electronic devices. However, synthesizing graphdiyne presents significant challenges, primarily due to the difficulty in achieving precise and deterministic control over the coupling of its monomers. This precision is crucial for determining the material's porosity, periodicity, and overall functionality. Innovative approaches have been developed to address these challenges, such as the strategic assembly of molecular building blocks at heterogeneous interfaces. Furthermore, data-driven techniques, such as machine learning and artificial intelligence (AI), are proving invaluable in this field, assisting in screening precursors, optimizing structural configurations, and predicting novel properties of these materials. These advancements are essential for producing durable monolayer sheets that can be integrated into existing electronic components. Despite these advancements, the integration of graphdiyne into semiconductor technology remains complex. Achieving long-range coherence in bonding configurations and enhancing charge transport characteristics are significant hurdles. Continued research into robust and controllable synthesis techniques is essential for unlocking the full potential of graphdiyne and other 2D materials, leading to more efficient, faster, and mechanically robust electronics.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 1","pages":"3-9"},"PeriodicalIF":0.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}