{"title":"Proposing a novel mathematical model for hospital pneumatic system","authors":"Büşra Takgil, R. Kara","doi":"10.11121/ijocta.1489","DOIUrl":null,"url":null,"abstract":"Hospital Pneumatic Systems, specializing in pneumatic systems, are among the most essential components for hospitals. It offers efficient and cost-effective solutions to problems related to the transportation of various materials in hospitals. However, in existing systems, the need for compressed air is met without worrying about cost control and without depending on the sample transported, and this not only makes the system inefficient but also may cause sample degradation. The main purpose of this study is to provide speed/pressure control according to the type of material transported to eliminate the disadvantages of existing systems such as energy use and sample degradation. In this study, a new mathematical model is presented that can be used to make more energy-efficient hospital pneumatic systems. Although there are many studies on various pneumatic systems in the literature, there is not enough for the control of hospital pneumatic systems. According to the results obtained in this study, the system parameters were determined and the mathematical model of the system was obtained by using the Multivariate nonlinear regression method. A genetic algorithm was used to test the validity of the obtained mathematical model and to optimize the coefficient of the input parameters of the model. It is expected that this proposed model will contribute to the use of hospital pneumatic systems and provide a scientific and practical solution to the proposed mathematical model. The proposed mathematical model provides up to %43 more efficient transportation over the currently used system that has been tested.","PeriodicalId":505378,"journal":{"name":"An International Journal of Optimization and Control: Theories & Applications (IJOCTA)","volume":" 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"An International Journal of Optimization and Control: Theories & Applications (IJOCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.1489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hospital Pneumatic Systems, specializing in pneumatic systems, are among the most essential components for hospitals. It offers efficient and cost-effective solutions to problems related to the transportation of various materials in hospitals. However, in existing systems, the need for compressed air is met without worrying about cost control and without depending on the sample transported, and this not only makes the system inefficient but also may cause sample degradation. The main purpose of this study is to provide speed/pressure control according to the type of material transported to eliminate the disadvantages of existing systems such as energy use and sample degradation. In this study, a new mathematical model is presented that can be used to make more energy-efficient hospital pneumatic systems. Although there are many studies on various pneumatic systems in the literature, there is not enough for the control of hospital pneumatic systems. According to the results obtained in this study, the system parameters were determined and the mathematical model of the system was obtained by using the Multivariate nonlinear regression method. A genetic algorithm was used to test the validity of the obtained mathematical model and to optimize the coefficient of the input parameters of the model. It is expected that this proposed model will contribute to the use of hospital pneumatic systems and provide a scientific and practical solution to the proposed mathematical model. The proposed mathematical model provides up to %43 more efficient transportation over the currently used system that has been tested.